English

There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection - Mathematics and Statistics

Advertisements
Advertisements

Question

There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection

Sum

Solution

There are 20 lines such that no two of them are parallel and no three of them are concurrent.

Since no two lines are parallel

∴ they intersect at a point

∴ Number of points of intersection if no two lines are parallel and no three lines are concurrent

= 20C2

= `(20!)/(2!18!)`

= `(20 xx 19 xx 18!)/(2 xx 1 xx 18!)`

= 190

shaalaa.com
Properties of Combinations
  Is there an error in this question or solution?
Chapter 3: Permutations and Combination - Exercise 3.6 [Page 65]

APPEARS IN

RELATED QUESTIONS

Find the value of `""^20"C"_16 - ""^19"C"_16`


Find n and r if `""^"n""C"_("r" - 1): ""^"n""C"_"r": ""^"n""C"_("r" + 1)` = 20:35:42


If `""^"n""P"_"r" = 1814400` and `""^"n""C"_"r"` = 45, find r.


If `""^"n""C"_("r" - 1)` = 6435, `""^"n""C"_"r"` = 5005, `""^"n""C"_("r" + 1)` = 3003, find `""^"r""C"_5`.


Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 10


Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear.


Find the number of triangles formed by joining 12 points if four points are collinear.


Find n if `""^"n""C"_8 = ""^"n""C"_12`


Find n, if `""^21"C"_(6"n") = ""^21"C"_(("n"^2 + 5)`


Find r if `""^11"C"_4 + ""^11"C"_5 + ""^12"C"_6 + ""^13"C"_7 = ""^14"C"_"r"`


Find the differences between the largest values in the following: `""^14"C"_r  "and"  ""^12"C"_r`


Find the differences between the largest values in the following: `""^13"C"_r  "and"  ""^8"C"_r`


A group consists of 9 men and 6 women. A team of 6 is to be selected. How many of possible selections will have at least 3 women?


Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.


If nPr = 1814400 and nCr = 45, find n+4Cr+3 


Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 8 green balls, and 7 blue balls so that 3 balls of every colour are drawn


After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.


A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?


Find n if 23C3n = 23C2n+3 


Find n if nCn–2 = 15


Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr


Find the value of `sum_("r" = 1)^4 ""^((21 - "r"))"C"_4`


A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in majority?


A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?


There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?


Five students are selected from 11. How many ways can these students be selected if two specified students are selected?


Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?


Select the correct answer from the given alternatives.

The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently


Answer the following:

Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections


A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.


Answer the following:

There are 4 doctors and 8 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team


Answer the following:

Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms formed


In how many ways can a group of 5 boys and 6 girls be formed out of 10 boys and 11 girls?


Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×