Advertisements
Advertisements
Question
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Solution
Number of students is 11. We have to select 5 students
2 particular students are not selected:
If 2 particular students are not selected, then from remaining (11 – 2) = 9 students, we have to select 5 students.
This can be done in 9C5 ways.
∴ total number of selections
= 9C5
= `9/(5!4!)`
= `(9 xx 8 xx 7 xx 6)/(1 xx 2 xx 3 xx 4)`
= 126.
APPEARS IN
RELATED QUESTIONS
Find the value of `""^80"C"_2`
If `""^"n""P"_"r" = 1814400` and `""^"n""C"_"r"` = 45, find r.
Find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls.
If 20 points are marked on a circle, how many chords can be drawn?
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 10
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 15
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 12
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear.
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear.
Find the number of triangles formed by joining 12 points if no three points are collinear,
Find the number of triangles formed by joining 12 points if four points are collinear.
Find n if `""^"n""C"_8 = ""^"n""C"_12`
Find n, if `""^23"C"_(3"n") = ""^23"C"_(2"n" + 3)`
Find n, if `""^21"C"_(6"n") = ""^21"C"_(("n"^2 + 5)`
Find x if `""^"n""P"_"r" = "x" ""^"n""C"_"r"`
Find r if `""^11"C"_4 + ""^11"C"_5 + ""^12"C"_6 + ""^13"C"_7 = ""^14"C"_"r"`
Find the differences between the largest values in the following: `""^15"C"_r "and" ""^11"C"_r`
A group consists of 9 men and 6 women. A team of 6 is to be selected. How many of possible selections will have at least 3 women?
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 8 green balls, and 7 blue balls so that 3 balls of every colour are drawn
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 8
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear
Find the number of triangles formed by joining 12 points if no three points are collinear
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr
A group consists of 9 men and 6 women. A team of 6 is to be selected. How many of possible selections will have at least 3 women?
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in majority?
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Five students are selected from 11. How many ways can these students be selected if two specified students are selected?
Answer the following:
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part-II book only if Chemistry Part-I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
The maximum value of z = 9x + 11y subject to 3x + 2y ≤ 12, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0 is _______.
In how many ways can a group of 5 boys and 6 girls be formed out of 10 boys and 11 girls?
If 'n' is positive integer and three consecutive coefficient in the expansion of (1 + x)n are in the ratio 6 : 33 : 110, then n is equal to ______.
What is the probability of getting a “FULL HOUSE” in five cards drawn in a poker game from a standard pack of 52-cards?
[A FULL HOUSE consists of 3 cards of the same kind (eg, 3 Kings) and 2 cards of another kind (eg, 2 Aces)]