English

Find the value of (3+1)4-(3-1)4. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the value of `(sqrt(3) + 1)^4- (sqrt(3) - 1)^4`.

Sum

Solution

`(sqrt(3) + 1)^4 = ""^4"C"_0(sqrt(3))^4 (1)^0 + ""^4"C"_1(sqrt(3))^3 (1)^1 + ""^4"C"_2(sqrt(3))^2 (1)^2 + ""^4"C"_3(sqrt(3))^1 (1)^3 + ""^4"C"_4 (sqrt(3))^0 (1)^4`

Since, 4C0 = 4C4 = 1, 4C1 = 4C3 = 4,

4C2 = `(4 xx 3)/(2 xx 1)`  = 6

 ∴ `(sqrt(3) + 1)^4 = 1(9)(1) + 4(3sqrt(3))(1) + 6(3) (1) + 4(sqrt(3))(1) + 1(1)(1)`

∴ `(sqrt(3) + 1)^4 = 9 + 12sqrt(3) + 18 + 4sqrt(3) + 1`               ...(i)

Also, `(sqrt(3) - 1)^4 = ""^4"C"_0(sqrt(3))^4 (1)^0 - ""^4"C"_1(sqrt(3))^3 (1)^1 + ""^4"C"_2(sqrt(3))^2(1)^2 -  ""^4"C"_3(sqrt(3))^1(1)^3 + ""^4"C"_4(sqrt(3))^0 (1)^4`

= `1(9)(1) - 4(3sqrt(3))(1) + 6(3)(1) - 4(sqrt(3))(1) + 1(1)(1)`

∴ `(sqrt(3) - 1)^4 = 9 - 12sqrt(3) + 18 - 4sqrt(3) + 1`                 ...(ii)

Subtracting (ii) from (i), we get

`(sqrt(3) + 1)^4- (sqrt(3) - 1)^4`

= `(9 + 12sqrt(3) + 18 + 4sqrt(3) + 1) - (9 - 12sqrt(3) + 18 - 4sqrt(3) + 1)`

= `24sqrt(3) + 8sqrt(3)`

= `32sqrt(3)`.

shaalaa.com
Binomial Theorem for Positive Integral Index
  Is there an error in this question or solution?
Chapter 4: Methods of Induction and Binomial Theorem - Exercise 4.2 [Page 77]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 4 Methods of Induction and Binomial Theorem
Exercise 4.2 | Q 3. (i) | Page 77
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×