English

Prove that (5+1)5-(5-1)5 = 352 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that `(sqrt(5) + 1)^5 - (sqrt(5) - 1)^5` = 352

Sum

Solution

`(sqrt(5) + 1)^5 = ""^5"C"_0 (sqrt(5))^5 (1)^0 + ""^5"C"_1 (sqrt(5))^4 (1)^1 + ""^5"C"_2 (sqrt(5))^3 (1)^2  + ""^5"C"_3 (sqrt(5))^2 (1)^3 + ""^5"C"_4 (sqrt(5)^1) (1)^4 + ""^5"C"_5(sqrt5)^0 (1)^5`

Now, 5C0 = 5C5 = 1, 5C1 = 5C4 = 5, 5C2 = 5C3 = 10       

∴ `(sqrt(5) + 1)^5 = 1(25sqrt5)(1) + 10(5sqrt5)(1) + 10(5)(1) + 5sqrt5(1) + 1(1)(1)`     

∴ `(sqrt(5) + 1)^5 = 25sqrt5 + 125 + 50sqrt5 + 50 + 5sqrt5 + 1`                             ...(1)

Also, `(sqrt(5) - 1)^5 = ""^5"C"_0(sqrt(5))^5(1)^0 - ""^5"C"_1(sqrt(5))^4(1)^1 + ""^5"C"_2 (sqrt(5))^3(1)^2 - ""^5"C"_3 (sqrt(5))^2(1)^3 + ""^5"C"_4 (sqrt(5))^1(1)^4 - ""^5"C"_5(sqrt5)^0 (1)^5`

∴ `(sqrt(5) - 1)^5 = 1(25sqrt5)(1) - 5(25)(1) + 10(5sqrt5)(1) - 10(5)(1) + 5sqrt5(1) - 1(1)(1)`

∴ `(sqrt(5) - 1)^5 = 25sqrt5 - 125 + 50sqrt5 - 50 + 5sqrt5 - 1`                              ...(2)

Subtracting (2) from (1), we get,

`(sqrt(5) + 1)^5 - (sqrt(5) - 1)^5 = (25sqrt5 + 125 + 50sqrt5 + 50 + 5sqrt5 + 1) - (25sqrt5 - 125 + 50sqrt5 - 50 + 5sqrt5 - 1)`

= `25sqrt5 + 125 + 50sqrt5 + 50 + 5sqrt5 + 1 - 25sqrt5 + 125 - 50sqrt5 + 50 - 5sqrt5 + 1`

= `cancel(25sqrt5) + 125 + cancel(50sqrt5) + 50 + cancel(5sqrt5) + 1 - cancel(25sqrt5) + 125 - cancel(50sqrt5) + 50 - cancel(5sqrt5) + 1`

= 125 + 125 + 50 + 50 + 1 + 1

= 250 + 100 + 2

= 352

shaalaa.com
Binomial Theorem for Positive Integral Index
  Is there an error in this question or solution?
Chapter 4: Methods of Induction and Binomial Theorem - Exercise 4.2 [Page 77]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 4 Methods of Induction and Binomial Theorem
Exercise 4.2 | Q 4. (ii) | Page 77
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×