Advertisements
Advertisements
Question
Without expanding, find the value of (2x − 1)4 + 4(2x − 1)3 (3 − 2x) + 6(2x − 1)2 (3 − 2x)2 + 4(2x − 1)1 (3 − 2x)3 + (3 − 2x)4
Solution
We notice that the coefficients 1, 4, 6, 4, 1 are the values of 4C0, 4C1, 4C2, 4C3, and 4C4 respectively.
Hence, the given expression can be written as:
4C0(2x − 1)4 + 4C1(2x − 1)3(3 − 2x) + 4C2(2x − 1)2(3 − 2x)2 + 4C3(2x − 1)(3 − 2x)3 + 4C4(3 − 2x)4
= [(2x − 1) + (3 − 2x)]4
= (2x − 1 + 3 − 2x)4
= (2)4
= 16
APPEARS IN
RELATED QUESTIONS
Expand: `(sqrt(3) + sqrt(2))^4`
Expand: `(sqrt(5) - sqrt(2))^5`
Expand: (2x2 + 3)4
Expand: `(2x - 1/x)^6`
Find the value of `(sqrt(3) + 1)^4- (sqrt(3) - 1)^4`.
Find the value of `(2 + sqrt(5))^5 + (2 - sqrt(5))^5`
Prove that `(sqrt(3) + sqrt(2))^6 + (sqrt(3) - sqrt(2))^6` = 970
Prove that `(sqrt(5) + 1)^5 - (sqrt(5) - 1)^5` = 352
Using binomial theorem, find the value of (102)4
Using binomial theorem, find the value of (1.1)5
Using binomial theorem, find the value of (9.9)3
Using binomial theorem, find the value of (0.9)4
Without expanding, find the value of (x + 1)4 − 4(x + 1)3 (x − 1) + 6 (x + 1)2 (x − 1)2 − 4(x + 1) (x − 1)3 + (x − 1)4
Find the value of (1.02)6, correct upto four places of decimal
Find the value of (1.01)5, correct up to three places of decimals.
Find the value of (0.9)6, correct upto four places of decimal