Advertisements
Advertisements
Question
Find the value of the following:
\[\left\{ \left( \frac{1}{3} \right)^{- 1} - \left( \frac{1}{4} \right)^{- 1} \right\}^{- 1}\]
Solution
We know from the property of powers that for every natural number a, a−1 = 1/a. Then:
`((1/3)^(-1)-(1/4)^(-1))^(-1)=(3-4)^(-1)` `->(a^(-1)=1/a)`
`=(-1)^(-1)`
= -1 → (a−1 = 1/a)
APPEARS IN
RELATED QUESTIONS
Simplify.
`(3^(-5) xx 10^(-5) xx 125)/(5^(-7) xx 6^(-5))`
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0. (−4)−2
Simplify:
\[\left( 3^{- 1} \times 4^{- 1} \right)^{- 1} \times 5^{- 1}\]
By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( - \frac{4}{7} \right)^{- 1} ?\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
Simplify:
\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]
if \[x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{- 4}\], find the value of x−2.
For any two non-zero rational numbers a and b, a4 ÷ b4 is equal to
Evaluate.
(5−1 × 2−1))× 6−1
Find the multiplicative inverse of the following.
10– 5