Advertisements
Advertisements
Question
For the marginal revenue function MR = 6 – 3x2 – x3, Find the revenue function and demand function
Solution
MR = 6 – 3x2 – x3
Revenue function R = `int "MR" "d"x`
R = `int (6 – 3x^2 – x^3) "d"x`
R = `(6x - (3x^3)/3 - x^4/4) + "k"`
When x = 0
R = 0
⇒ k = 0
∴ R = `6 - x^3 -x^4/4`
Demand function P = `"R"/x`
= `((6x - x^3 - x^4/4))/x`
P = `6 - x^2 - x^3/4`
APPEARS IN
RELATED QUESTIONS
The marginal cost function of a product is given by `"dc"/("d"x)` = 100 – 10x + 0.1x2 where x is the output. Obtain the total and the average cost function of the firm under the assumption, that its fixed cost is ₹ 500
Determine the cost of producing 200 air conditioners if the marginal cost (is per unit) is C'(x) = `x^2/200 + 4`
The marginal cost function of a commodity is given by MC = `14000/sqrt(7x + 4)` and the fixed cost is ₹ 18,000. Find the total cost and average cost
If the marginal cost (MC) of production of the company is directly proportional to the number of units (x) produced, then find the total cost function, when the fixed cost is ₹ 5,000 and the cost of producing 50 units is ₹ 5,625
Calculate consumer’s surplus if the demand function p = 50 – 2x and x = 20
If the supply function for a product is p = 3x + 5x2. Find the producer’s surplus when x = 4
The demand and supply functions under perfect competition are pd = 1600 – x2 and ps = 2x2 + 400 respectively. Find the producer’s surplus
Choose the correct alternative:
For the demand function p(x), the elasticity of demand with respect to price is unity then
Choose the correct alternative:
If MR and MC denote the marginal revenue and marginal cost and MR – MC = 36x – 3x2 – 81, then the maximum profit at x is equal to
A company has determined that marginal cost function for x product of a particular commodity is given by MC = `125 + 10x - x^2/9`. Where C is the cost of producing x units of the commodity. If the fixed cost is ₹ 250 what is the cost of producing 15 units