Advertisements
Advertisements
Question
From the following data find y at x = 43 and x = 84.
x | 40 | 50 | 60 | 70 | 80 | 90 |
y | 184 | 204 | 226 | 250 | 276 | 304 |
Solution
To find y at x = 43
Since the value of y is required near the beginning of the table
We use the Newton’s forward interpolation formula.
`y_((x = 2.8)) = 34 + ((-0.2))/(1!) (23) + ((-0.2)(-0.2 + 1))/2 (14) + ((-0.2)(-0.2 + 1)(-0.2 + 2))/(3!) (6) + ......`
= `34 - 4.6 + ((-0.2)(0.8)(14))/2 + ......`
x | y | `Deltay` | `Delta^2y` | `Delta^3y` | `Delta^4y` |
40 | 184 | ||||
20 | |||||
50 | 204 | 2 | |||
22 | 0 | ||||
60 | 226 | 2 | 0 | ||
24 | 0 | ||||
70 | 250 | 2 | 0 | ||
26 | 0 | ||||
80 | 276 | 2 | |||
28 | |||||
90 | 304 |
`y_((43)) = 184 + 0.3/(1!) (0) + ((0.3)(0.3 - 1))/(2!) (2) + ((0.3)(0.3 - 1)(0.3 - 2))/(3!) (0)`
= 184 + (0.3)(20) + (0.3)(– 0.7)
= 184 + 6.0 – 0.21
= 190 + 0.21
`y_((x = 43))` = 189.79
To find y at x = 84
Since the value of y is required at the end of the table, we apply backward interpolation formula.
`y_((x = x_"n" + "nh")) = y_"n" + "n"/(1!) ∇y_"n" + ("n"("n" + 1))/(2!) ∇^2y_"n" + ("n"("n" + 1)("n" + 2))/(3!) Delta^3y_"n" + .......`
x | y | `Deltay` | `Delta^2y` | `Delta^3y` | `Delta^4y` |
40 | 184 | ||||
20 | |||||
50 | 204 | 2 | |||
22 | 0 | ||||
60 | 226 | 2 | 0 | ||
24 | 0 | ||||
70 | 250 | 2 | 0 | ||
26 | 0 | ||||
80 | 276 | 2 | |||
28 | |||||
90 | 304 |
xn + nh = x
90 + n(10) = 84
10n = 84 – 90
10n = – 6
∴ n = – 0.6
`y_((x = 84)) = 304 + ((0.6))/(1!) (28) + ((0.6)(-0.6 + 1))/(2!) (2) + ....`
= `304 + (0.6)(28) + ((-0.06)(0.4))/2 + 2`
= 304 – 16.8 – 0.24
= 304 – 17.04
= 286.96
APPEARS IN
RELATED QUESTIONS
The following data relates to indirect labour expenses and the level of output
Months | Jan | Feb | Mar |
Units of output | 200 | 300 | 400 |
Indirect labour expenses (Rs) |
2500 | 2800 | 3100 |
Months | Apr | May | June |
Units of output | 640 | 540 | 580 |
Indirect labour expenses (Rs) |
3820 | 3220 | 3640 |
Estimate the expenses at a level of output of 350 units, by using graphic method.
Using Newton’s forward interpolation formula find the cubic polynomial.
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 1 | 10 |
Find f(2.8) from the following table:
x | 0 | 1 | 2 | 3 |
f(x) | 1 | 2 | 11 | 34 |
Using interpolation estimate the output of a factory in 1986 from the following data.
Year | 1974 | 1978 | 1982 | 1990 |
Output in 1000 tones |
25 | 60 | 80 | 170 |
Using interpolation estimate the business done in 1985 from the following data
Year | 1982 | 1983 | 1984 | 1986 |
Business done (in lakhs) |
150 | 235 | 365 | 525 |
Using interpolation, find the value of f(x) when x = 15
x | 3 | 7 | 11 | 19 |
f(x) | 42 | 43 | 47 | 60 |
A second degree polynomial passes though the point (1, –1) (2, –1) (3, 1) (4, 5). Find the polynomial
Find f(0.5) if f(– 1) = 202, f(0) = 175, f(1) = 82 and f(2) = 55
From the following table obtain a polynomial of degree y in x.
x | 1 | 2 | 3 | 4 | 5 |
y | 1 | – 1 | 1 | – 1 | 1 |
Using Lagrange’s interpolation formula find a polynominal which passes through the points (0, –12), (1, 0), (3, 6) and (4, 12)