English

गणित, भौतिक विज्ञान तथा रसायन विज्ञान में परीक्षा देने वाले 50 विद्यार्थियों में से प्रत्येक कम से कम एक विषय में उत्तीर्ण होता है। 37 गणित में, 24 भौतिक विज्ञान में तथा 43 रसायन विज्ञान में उत्तीर्ण - Mathematics (गणित)

Advertisements
Advertisements

Question

गणित, भौतिक विज्ञान तथा रसायन विज्ञान में परीक्षा देने वाले 50 विद्यार्थियों में से प्रत्येक कम से कम एक विषय में उत्तीर्ण होता है। 37 गणित में, 24 भौतिक विज्ञान में तथा 43 रसायन विज्ञान में उत्तीर्ण होते हैं। यदि गणित और भौतिक विज्ञान में अधिकतम 19, गणित और रसायन विज्ञान में अधिकतम 29 तथा भौतिक विज्ञान और रसायन विज्ञान में अधिकतम 20 उत्तीर्ण होते हैं, तो तीनों विषयों में उत्तीर्ण होने वाले विद्यार्थियों की अधिकतम संभव संख्या कितनी है?

Sum

Solution

मान लीजिए कि,

M गणित में उत्तीर्ण होने वाले विद्यार्थियों का समुच्चय है,

P भौतिक विज्ञान में उत्तीर्ण होने वाले विद्यार्थियों का समुच्चय है और

C रसायन विज्ञान में उत्तीर्ण होने वाले विद्यार्थियों का समुच्चय है

अब n(M ∪ P ∪ C) = 50, n(M) = 37, n(P) = 24, n(C) = 43

n(M ∩ P) ≤ 19, n(M ∩ C) ≤ 29, तथा n(P ∩ C) ≤ 20 (दिया है)

ज्ञात है कि,

n(M ∪ P ∪ C) = n(M) + n(P) + n(C) – n(M ∩ P) – n(M ∩ C) – n(P ∩ C) + n(M ∩ P ∩ C) ≤ 50

⇒ 37 + 24 + 43 – 19 – 29 – 20 + n(M ∩ P ∩ C) ≤ 50

⇒ n(M ∩ P ∩ C) ≤ 50 – 36

⇒ n(M ∩ P ∩ C) ≤ 14

अतः तीनों विषयों में उत्तीर्ण होने वालों की अधिकतम संभव संख्या 14 है।

shaalaa.com
दो समुच्चयों के सम्मिलन और सर्वनिष्ठ पर आधारित व्यावहारिक प्रश्न
  Is there an error in this question or solution?
Chapter 1: समुच्चय - हल किए हुए उदाहरण [Page 10]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 1 समुच्चय
हल किए हुए उदाहरण | Q 13 | Page 10

RELATED QUESTIONS

यदि X और Y दो ऐसे समुच्चय हैं कि X ∪ Yमें 18, X में 8 और Y में 15 अवयव हों तो X ∩ Y में कितने अवयव होंगे?


400 व्यक्तियों के समूह में, 250 हिन्दी तथा 200 अंग्रेजी बोल सकते हैं। कितने व्यक्ति हिन्दी तथा अंग्रेजी दोनों बोल सकते हैं?


यदि S और T दो ऐसे समुच्चय हैं कि 5 में 21, T में 32 और S ∩ T में 11 अवयव हों तो S ∪ T में कितने अवयव होंगे?


यदि X और Y दो ऐसे समुच्चय हैं कि x में 40, X ∩ Y में 60 और X ∪ Y में 10 अवयव हों, तो Y में कितने अवयव होंगें?


65 व्यक्तियों के समूह में, 40 व्यक्ति क्रिकेट और 10 व्यक्ति क्रिकेट तथा टेनिस दोनों को पंसद करते हैं, तो कितने व्यक्ति केवल टेनिस को पंसद करते हैं किंतु क्रिकेट को नहीं? कितने व्यक्ति टेनिस को पंसद करते हैं?


एक कमेटी में, 50 व्यक्ति फ्रैंच 20 व्यक्ति स्पेनिश और 10 व्यक्ति स्पेनिश और फ्रैंच दोनों ही .भाषाओं को बोल सकते हैं। कितने व्यक्ति इन दोनों ही भाषाओं में से कम से कम एक भाषा बोल सकते हैं?


60 लोगों के सर्वेक्षण में पाया गया कि 25 लोग समाचार पत्र H, 26 लोग समाचार पत्र T, 26 लोग समाचार पत्र I, 9 लोग H तथा I दोनों, 11 लोग H तथा T दोनों, 8 लोग T तथा । दोनों और 3 लोग तीनों ही समाचार पत्र पढ़ते हैं, तो निम्नलिखित ज्ञात कीजिए:

  1. कम से कम एक समाचार पत्र पढ़ने वालों की संख्या।
  2. ठीक ठीक केवल एक समाचार पत्र पढ़ने वालों की संख्या।

मान लीजिए कि P अभाज्य संख्याओं का समुच्चय है और S = {t|2t - 1|} एक अभाज्य संख्या है। सिद्ध कीजिए कि S ⊂ P.


प्रत्येक समुच्चय Xr में 5 अवयव हैं तथा प्रत्येक समुच्चय Yr में 2 अवयव हैं और `""_(r = 1)""^(20)X_r = S = ""_(r = 1)""^(n)Y_r`. यदि S का प्रत्येक अवयव Xr के तथ्यतः (exactly) 10 समुच्चयों और Yr प्रकार के तथ्यतः 4 समुच्चयों में है, तो n का मान ______


किसी विद्यालय के 200 विद्यार्थियों के सर्वेक्षण (Survey) से ज्ञात हुआ कि 120 विद्यार्थी गणित, 90 भौतिक विज्ञान तथा 70 रसायन विज्ञान पढ़ते हैं। 40 गणित और भौतिक विज्ञान, 30 भौतिक विज्ञान और रसायन विज्ञान, 50 रसायन विज्ञान और गणित पढ़ते हैं तथा 20 इन विषयों में से कोई भी विषय नहीं पढ़ते हैं। उन विद्यार्थियों की संख्या ज्ञात कीजिए, जो इन तीनों ही विषयों को पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल फ्रांसीसी पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल अंग्रेजी पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल संस्कृत पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, अंग्रेजी और संस्कृत पढ़ते हैं परंतु, फ्रांसीसी नहीं पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, फ्रांसीसी और संस्कृत पढ़ते हैं परंतु अंग्रेजी नहीं पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, तीनों भाषाओं में से एक भी भाषा नहीं पढ़ते हैं।


60 विद्यार्थियों की एक कक्षा में 25 विद्यार्थी क्रिकेट, 20 विद्यार्थी टेनिस और 10 विद्यार्थी दोनों ही खेल खेलते हैं, तो दोनों में से कोई भी खेल नहीं खेलने वाले विद्यार्थियों की संख्या ______


यदि 840 व्यक्तियों वाले किसी नगर में 450 व्यक्ति हिंदी, 300 व्यक्ति अंग्रेजी और 200 व्यक्ति दोनों ही विषय पढ़ते हैं, तो दोनों में से कोई भी विषय नहीं पढ़ने वाले व्यक्तियों की संख्या ______


यदि X = {8n − 7n − 1 ∣ n ∈ N} और Y = {49n − 49 ∣ n ∈ N}, तो ______


मान लीजिए कि  S = {x ∣ x 100 से छोटा 3 का एक धनात्मक गुणज है},

P = {x ∣ x, 20 से छोटी एक अभाज्य संख्या है}, तो n(S) + n(P) = ______ है।


जब A = ϕ, तो P(A) में अवयवों की संख्या ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×