Advertisements
Advertisements
Question
गुणनखंड प्रमेय लागू करके बताइए कि निम्नलिखित स्थिति में g(x), p(x) का एक गुणनखंड है या नहीं:
p(x) = x3 − 4x2 + x + 6, g(x) = x − 3
Solution
यदि g(x) = x − 3 दिए गए बहुपद p(x) का एक गुणनखंड है, तो p(3) 0 होगा।
p(x) = x3 − 4x2 + x + 6
p(3) = (3)3 − 4(3)2 + 3 + 6
= 27 − 4(9) + 3 + 6
= 27 − 36 + 3 + 6
= 0
अतः, g(x) = x − 3 दिए गए बहुपद का एक गुणनखंड है।
APPEARS IN
RELATED QUESTIONS
गुणनखंड ज्ञात कीजिए:
3x2 – x – 4
जाँच कीजिए कि p(x), g(x) का एक गुणज है या नहीं :
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
गुणनखंड कीजिए :
2x3 – 3x2 – 17x + 30
गुणनखंड कीजिए :
3x3 – x2 – 3x + 1
निम्नलिखित के गुणनखंड कीजिए :
4x2 + 20x + 25
निम्नलिखित के गुणनखंड कीजिए :
9x2 – 12x + 4
निम्नलिखित के गुणनखंड कीजिए :
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
निम्नलिखित का प्रसार कीजिए :
(3a – 2b)3
(2x – 5y)3 – (2x + 5y)3 को सरल कीजिए।