English

Given that x ∈ I, solve the inequation and graph the solution on the number line: 3≥x−42+x3≥23≥x-42+x3≥23 ≥ (x - 4)/(2) + x/(3) ≥ 2 - Mathematics

Advertisements
Advertisements

Question

Given that x ∈ I, solve the inequation and graph the solution on the number line: `3 ≥ (x - 4)/(2) + x/(3) ≥ 2`

Sum

Solution

`3 ≥ (x - 4)/(2) + x/(3) and 3 ≥ (x - 4)/(2) + x/(3) ≥ 2`

(i) `3 ≥ (3x - 12 + 2x)/(6)`

⇒ `3 ≥ (5x - 12)/(6)`
⇒ 18 ≥ 5x - 12
⇒ 5x - 12 ≤ 18
⇒ 5x  ≤ 18 + 12
⇒ 5x ≤ 30
⇒ x ≤ 6

(ii) `(x - 4)/(2) + x/(3) ≥ 2`

`(3x - 12 + 2x)/(6) ≥ 2`

⇒ `(5x - 12)/(6) ≥ 2`
⇒ 5x - 12 ≥ 12

⇒ 5x ≥ 12 + 12, x ≥ `(24)/(5)`

⇒ x ≥ `4(4)/(5)`
∴ x = {5, 6}
Number line:

shaalaa.com
Representation of Solution on the Number Line
  Is there an error in this question or solution?
Chapter 4: Linear Inequations - Exercise 4.1

APPEARS IN

ML Aggarwal Understanding ICSE Mathematics [English] Class 10
Chapter 4 Linear Inequations
Exercise 4.1 | Q 16
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×