Advertisements
Advertisements
Question
If a : b = 3 : 1 and b : c = 5 : 1 then find the value of `a^2/ (7bc)`
Solution
a : b = 3 : 1
`therefore a/b = 3/1 ⇒ a = 3b` ...(1)
b : c = 5 : 1
`b/c = 5/1 ⇒ b = 5c` ...(2)
From (1) and (2), we have
a = 3 × 5c = 15c
`a^2/ (7bc)`
= `(15c)^2 / (7 xx 5c xx c)`
= `225/35`
= `45/7`
APPEARS IN
RELATED QUESTIONS
Using the property `bb("a"/"b" = ("ak")/("bk"))`, fill in the blanks substituting proper numbers in the following.
`5/7 = ("___")/28 = 35/("___") = ("___")/3.5`
Using the property `bb(a/b = (ak)/(bk))`, fill in the blanks substituting proper numbers in the following.
`9/14 = 4.5/("___") = ("___")/ 42 = ("___") /3.5`
Compare the following pair of ratios.
`sqrt5/3 , 3/ sqrt7`
Compare the following pair of ratios.
`(3sqrt5)/(5sqrt7) , sqrt 63 / sqrt 125`
Compare the following pair of ratios.
`5/18,17/121`
Compare the following pair of ratios.
`sqrt80/sqrt48 , sqrt45/sqrt27`
Compare the following pair of ratios.
`9.2/5.1, 3.4/7.1`
If a : b = 3 : 1 and b : c = 5 : 1 then find the value of
`(a^3/{15b^2c})^3`
If `sqrt(0.04 xx 0.4 xx a ) = 0.4 xx0.04 xx sqrtb` then find the ratio `a/b`.
( x + 3) : ( x + 11) = ( x - 2) : ( x + 1) then find the value of x.