Advertisements
Advertisements
Question
Compare the following pair of ratios.
`sqrt80/sqrt48 , sqrt45/sqrt27`
Solution
`sqrt80 xx sqrt27 = sqrt (16 xx 5) xx sqrt ( 9 xx 3) = 4sqrt5 xx 3sqrt3 = 12sqrt15`
`sqrt45 xx sqrt48 = sqrt( 9 xx 5) xx sqrt( 16 xx 3) = 3sqrt5 xx 4sqrt3 = 12sqrt15`
Now, `12sqrt15 = 12sqrt15`
`therefore sqrt80/sqrt 48 = sqrt45/sqrt27`
APPEARS IN
RELATED QUESTIONS
Using the property `bb("a"/"b" = ("ak")/("bk"))`, fill in the blanks substituting proper numbers in the following.
`5/7 = ("___")/28 = 35/("___") = ("___")/3.5`
Using the property `bb(a/b = (ak)/(bk))`, fill in the blanks substituting proper numbers in the following.
`9/14 = 4.5/("___") = ("___")/ 42 = ("___") /3.5`
Compare the following pair of ratios.
`sqrt5/3 , 3/ sqrt7`
Compare the following pair of ratios.
`(3sqrt5)/(5sqrt7) , sqrt 63 / sqrt 125`
Compare the following pair of ratios.
`5/18,17/121`
Compare the following pair of ratios.
`9.2/5.1, 3.4/7.1`
If a : b = 3 : 1 and b : c = 5 : 1 then find the value of
`(a^3/{15b^2c})^3`
If `sqrt(0.04 xx 0.4 xx a ) = 0.4 xx0.04 xx sqrtb` then find the ratio `a/b`.
( x + 3) : ( x + 11) = ( x - 2) : ( x + 1) then find the value of x.
If a : b = 3 : 1 and b : c = 5 : 1 then find the value of `a^2/ (7bc)`