Advertisements
Advertisements
Question
Using the property `bb("a"/"b" = ("ak")/("bk"))`, fill in the blanks substituting proper numbers in the following.
`5/7 = ("___")/28 = 35/("___") = ("___")/3.5`
Solution
`5/7 = bb(20)/( 28)= (35)/bb(49)= bb(2.5)/ (3.5)`
Explanation:
28 = 7 × 4, 35 = 7 × 5, 3.5 = 7 × 0.5
Now,
⇒ `5/7 = (5 xx 4)/(7 xx 4)= (20)/( 28)`
⇒ `5/7 = (5 xx 7)/ (7 xx 7)= (35)/(49)`
⇒ `5/7 = (5 xx 0.5)/( 7 xx 0.5)= ( 2.5)/ (3.5)`
∴ `5/7 = (20)/( 28)= (35)/(49)= ( 2.5)/ (3.5)`
APPEARS IN
RELATED QUESTIONS
Using the property `bb(a/b = (ak)/(bk))`, fill in the blanks substituting proper numbers in the following.
`9/14 = 4.5/("___") = ("___")/ 42 = ("___") /3.5`
Compare the following pair of ratios.
`sqrt5/3 , 3/ sqrt7`
Compare the following pair of ratios.
`(3sqrt5)/(5sqrt7) , sqrt 63 / sqrt 125`
Compare the following pair of ratios.
`5/18,17/121`
Compare the following pair of ratios.
`sqrt80/sqrt48 , sqrt45/sqrt27`
Compare the following pair of ratios.
`9.2/5.1, 3.4/7.1`
If a : b = 3 : 1 and b : c = 5 : 1 then find the value of
`(a^3/{15b^2c})^3`
If `sqrt(0.04 xx 0.4 xx a ) = 0.4 xx0.04 xx sqrtb` then find the ratio `a/b`.
( x + 3) : ( x + 11) = ( x - 2) : ( x + 1) then find the value of x.
If a : b = 3 : 1 and b : c = 5 : 1 then find the value of `a^2/ (7bc)`