English

If `A≠ B ≠ C`, Prove that the Points (A, A2), (B, B2), (C, C2) Can Never Be Collinear. - Mathematics

Advertisements
Advertisements

Question

If `a≠ b ≠ c`, prove that the points (a, a2), (bb2), (cc2) can never be collinear.

Solution

GIVEN: If `a≠ b≠ c`

TO PROVE: that the points (a,a2), (b,b2) ,(c,c2),can never be collinear.

PROOF:

We know three points (x1,y1),(x2y2),and  (x3,y3) are collinear when 

`1/2[[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]=0` 

Now taking three point (a,a2),(b,b2),(c,c2), 

Area `=1/2[a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)` 

`=1/2[ab^2-ac^2+bc^2+ba^2+ca^2+cb^2]` 

`=1/2[(a^2c-a^2b)+(ab2-ac^2)+(bc2-b^2c)]` 

`=1/2[-a^2(b-c))+(a(b^2-c^2))-(bc(b-c))]`

`=1/2(b-c)(-a^2)+(a(b+c))-bc]` 

`=1/2(b-c)(-a^2)+ab+ac-bc]` 

`=1/2(b-c)(-a)(a-b)+c(a-b)]` 

`=1/2(b-c)(a-b)(c-a)`

Also it is given that

a≠ b≠ c

Hence area of triangle made by these points is never zero. Hence given points are never collinear.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Co-Ordinate Geometry - Exercise 6.5 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 6 Co-Ordinate Geometry
Exercise 6.5 | Q 26 | Page 54
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×