English
Tamil Nadu Board of Secondary EducationSSLC (English Medium) Class 10

If a1 = 1, a2 = 1 and an = 2an−1 + an−2, n ≥ 3, n ∈ N, then find the first six terms of the sequence - Mathematics

Advertisements
Advertisements

Question

If a1 = 1, a2 = 1 and an = 2an−1 + an−2, n ≥ 3, n ∈ N, then find the first six terms of the sequence

Sum

Solution

a1 = 1, a2 = 1, an = 2an−1 + an−2

a3 = 2a(3−1) + a(3−2)

= 2a2 + a1

= 2 × 1 + 1 = 3

a4 = 2a(4−1) + a(4−2)

= 2a3 + a2

= 2 × 3 + 1 = 7

a5 = 2a(5−1) + a(5−2)

= 2a4 + a3

= 2 × 7 + 3 = 17

a6 = 2a(6−1) + a(6−2)

= 2a5 + a4

= 2 × 17 + 7

= 34 + 7

= 41

∴ The first six terms of the sequence are 1, 1, 3, 7, 17, 41 .......

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Numbers and Sequences - Exercise 2.4 [Page 55]

APPEARS IN

Samacheer Kalvi Mathematics [English] Class 10 SSLC TN Board
Chapter 2 Numbers and Sequences
Exercise 2.4 | Q 6 | Page 55
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×