English

If α, β Are the Zeros of the Polynomial F(X) = X2 + X + 1, Then 1 α + 1 β = - Mathematics

Advertisements
Advertisements

Question

If α, β are the zeros of the polynomial f(x) = x2 + x + 1, then \[\frac{1}{\alpha} + \frac{1}{\beta} =\]

Options

  • 1

  • -1

  • 0

  • None of these

MCQ

Solution

Since `alpha` and  ß  are the zeros of the quadratic polynomial f(x) = x2 + x + 1,

`alpha + ß = - (text{coefficient of x})/(text{coefficient of } x^2)`

`= (-1)/1=1`

`alpha + ß = (\text{constat term})/(text{coefficient of} x^2)`

`= 1/1=1`

we have 

`= 1/alpha+ 1/ ß`

` (ß +alpha)/(alpha ß)`

`=-1/1`

`=-1`

The value of  `1/alpha + 1/ß ` is -1

Hence, the correct choice is  (b).

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.5 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 2 Polynomials
Exercise 2.5 | Q 1 | Page 61

Video TutorialsVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×