Advertisements
Advertisements
Question
If f, g : R → R are defined by f(x) = |x| + x and g(x) = |x| – x find g o f and f o g
Solution
f(x) = |x| + x = `{{:(x + x = 2x, "if" x ≥ 0),(- x + x = 0, "if" x < 0):}`
g(x) = |x| – x = `{{:(x - x = 0, "if" x ≥ 0),(- x - x = - 2x, "if" x < 0):}`
f o g(x) = f(g(x)) = `{{:(f(0), "if" x ≥ 0),(f(- 2x), "if" x < 0):}`
f o g(x) = `{{:(2 xx 0 = 0, "if" x ≥ 0),(- x + 2x = 0, "if" x < 0):}`
∴ f o g(x) = 0 for all x ∈ R
g o f(x) = g(f(x)) = `{{:(g(2x), "if" x ≥ 0),(g(0), "if" x < 0):}`
g o f(x) = `{{:(0, "if" x ≥ 0),(0, "if" x < 0):}`
⇒ g of(x) = 0 for all x ∈ R
APPEARS IN
RELATED QUESTIONS
Write the values of f at −3, 5, 2, −1, 0 if
f(x) = `{{:(x^2 + x - 5, "if" x ∈ (−∞, 0)),(x^2 + 3x - 2, "if" x ∈ (3, ∞)),(x^2, "if" x ∈ (0",", 2)),(x^2 - 3, "otherwise"):}`
State whether the following relations are functions or not. If it is a function check for one-to-oneness and ontoness. If it is not a function, state why?
If A = {a, b, c} and f = {(a, c), (b, c), (c, b)}; (f : A → A)
State whether the following relations are functions or not. If it is a function check for one-to-oneness and ontoness. If it is not a function, state why?
If X = {x, y, z} and f = {(x, y), (x, z), (z, x)}; (f : X → X)
Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:
neither one-to-one nor onto
Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:
one-to-one but not onto
Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:
one-to-one and onto
Find the domain of `1/(1 - 2sinx)`
Find the largest possible domain of the real valued function f(x) = `sqrt(4 - x^2)/sqrt(x^2 - 9)`
If f, g, h are real valued functions defined on R, then prove that (f + g) o h = f o h + g o h. What can you say about f o (g + h)? Justify your answer
The distance of an object falling is a function of time t and can be expressed as s(t) = −16t2. Graph the function and determine if it is one-to-one.
The total cost of airfare on a given route is comprised of the base cost C and the fuel surcharge S in rupee. Both C and S are functions of the mileage m; C(m) = 0.4 m + 50 and S(m) = 0.03 m. Determine a function for the total cost of a ticket in terms of the mileage and find the airfare for flying 1600 miles
The owner of a small restaurant can prepare a particular meal at a cost of Rupees 100. He estimates that if the menu price of the meal is x rupees, then the number of customers who will order that meal at that price in an evening is given by the function D(x) = 200 − x. Express his day revenue, total cost and profit on this meal as functions of x
The formula for converting from Fahrenheit to Celsius temperatures is y = `(5x)/9 - 160/9`. Find the inverse of this function and determine whether the inverse is also a function
Choose the correct alternative:
If f(x) = |x − 2| + |x + 2|, x ∈ R, then
Choose the correct alternative:
The range of the function f(x) = |[x] − x|, x ∈ R is
Choose the correct alternative:
The number of constant functions from a set containing m elements to a set containing n elements is
Choose the correct alternative:
The function f : [0, 2π] → [−1, 1] defined by f(x) = sin x is
Choose the correct alternative:
The inverse of f(x) = `{{:(x, "if" x < 1),(x^2, "if" 1 ≤ x ≤ 4),(8sqrt(x), "if" x > 4):}` is