English

If the Points A(3, 2, –4), B(9, 8, –10) and C(5, 4, –6) Are Collinear, Find the Ratio in Which Cdivides Ab. - Mathematics

Advertisements
Advertisements

Question

If the points A(3, 2, –4), B(9, 8, –10) and C(5, 4, –6) are collinear, find the ratio in which Cdivides AB.

Solution

Suppose C divides AB in the ratio \[\lambda: 1\]

Then, coordinates of C are as follows: 

\[\left( \frac{9\lambda + 3}{\lambda + 1}, \frac{8\lambda + 2}{\lambda + 1}, \frac{- 10\lambda - 4}{\lambda + 1} \right)\]
But, the coordinates of C are (5, 4,\[-\]6). 
\[\therefore \frac{9\lambda + 3}{\lambda + 1} = 5, \frac{8\lambda + 2}{\lambda + 1} = 4, \frac{- 10\lambda - 4}{\lambda + 1} = - 6\]
These three equations give \[\therefore \frac{9\lambda + 3}{\lambda + 1} = 5, \frac{8\lambda + 2}{\lambda + 1} = 4, \frac{- 10\lambda - 4}{\lambda + 1} = - 6\]
So, C divides AB in the ratio 1:2.
 

 

shaalaa.com
Three Dimessional Space
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.3 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.3 | Q 6 | Page 20
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×