English

Show that the Three Points A(2, 3, 4), B(–1, 2 – 3) and C(–4, 1, –10) Are Collinear and Find the Ratio in Which C Divides Ab. - Mathematics

Advertisements
Advertisements

Question

Show that the three points A(2, 3, 4), B(–1, 2 – 3) and C(–4, 1, –10) are collinear and find the ratio in which C divides AB

Solution

Suppose C divides AB in the ratio\[\lambda: 1\]

Then, the coordinates of C are\[\left( \frac{- \lambda + 2}{\lambda + 1}, \frac{2\lambda + 3}{\lambda + 1}, \frac{- 3\lambda + 4}{\lambda + 1} \right)\] 

But, the coordinates of C are (\[-\]4, 1,\[-\]10).10). 

\[\therefore \frac{- \lambda + 2}{\lambda + 1} = - 4, \frac{2\lambda + 3}{\lambda + 1} = 1, \frac{- 3\lambda + 4}{\lambda + 1} = - 10\]
\[ \Rightarrow - \lambda + 2 = - 4\lambda - 4, 2\lambda + 3 = \lambda + 1, - 3\lambda + 4 = - 10\lambda - 10\]
\[ \Rightarrow 3\lambda = - 6, \lambda = - 2, 7\lambda = - 14\]
\[ \therefore \lambda = - 2, \lambda = - 2, \lambda = - 2\] 

From these three equations, we have:

\[\lambda = - 2\]

So, C divides AB in the ratio 2:1 (externally).

shaalaa.com
Three Dimessional Space
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.3 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.3 | Q 3 | Page 20
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×