Advertisements
Advertisements
Question
If x - 1 is a factor of the polynomial `3x^2 + mx ` then find the value of m.
Options
2
-2
-3
3
Solution
-3
Explanation:
Let p(x) = 3x2 + mx.
(x − 1) is a factor of p(x).
∴ p(1) = 0
⇒ 3 × (1)2 + m × 1 = 0
⇒ 3 + m = 0
⇒ m = −3
APPEARS IN
RELATED QUESTIONS
If `p(m) = m^3 + 2m^2 - m + 10` then `p(a) + p(-a) =` ?
Find the value of the polynomial 2x - 2x3 + 7 using given values for x.
x = -1
For the following polynomial, find p(1), p(0) and p(-2).
p(x) = x4 − 2x2 − x
If the value of the polynomial m3 + 2m + a is 12 for m = 2, then find the value of a.
For the polynomial mx2 − 2x + 3 if p(−1) = 7 then find m.
If p(x) = 2 + 5x then p(2) + p(−2) − p(1).
`p(x) = x^2 - 7 sqrt 7 x + 3 "then " p(7 sqrt 7) = ?`
Find the value of the polynomial f(y) = 6y – 3y2 + 3 at y = 1
Find the value of the polynomial f(y) = 6y – 3y2 + 3 at y = 0
The sum of the polynomials p(x) = x3 – x2 – 2, q(x) = x2 – 3x + 1