English

If x = – 9 is a root of |x372x276x| = 0, then other two roots are ______. - Mathematics

Advertisements
Advertisements

Question

If x = – 9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0, then other two roots are ______.

Fill in the Blanks

Solution

If x = – 9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0, then other two roots are x = –9, 2, 7.

Explanation:

We have, `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0

Expanding along R1

⇒ `x|(x, 2),(6, x)| -3|(2, 2),(7, x)| + |(2, x),(7, 6)|` = 0

⇒ x(x2 – 12) – 3(2x – 14) + 7(12 – 7x) = 0

⇒ x3 – 12x – 6x + 42 + 84 – 49x = 0

⇒ x3 – 67x + 126 = 0   .....(1)

The roots of the equation may be the factors of 126

i.e., 2 × 7 × 9

9 is given the root of the determinant put x = 2 in equation (1)

(2)3 – 67 × 2 + 126

⇒ 8 – 134 + 126 = 0

Hence, x = 2 is the other root.

Now, put x = 7 in equation (1)

(7)3 – 67(7) + 126

⇒ 343 – 469 + 126 = 0

Hence, x = 7 is also the other root of the determinant.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise [Page 83]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 4 Determinants
Exercise | Q 45 | Page 83

RELATED QUESTIONS

Using properties of determinants prove the following: `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`


 

If ` f(x)=|[a,-1,0],[ax,a,-1],[ax^2,ax,a]| ` , using properties of determinants find the value of f(2x) − f(x).

 

Using the property of determinants and without expanding, prove that:

`|(b+c, q+r, y+z),(c+a, r+p, z +x),(a+b, p+q, x + y )| = 2|(a,p,x),(b,q,y),(c, r,z)|`


By using properties of determinants, show that:

`|(1,1,1),(a,b,c),(a^3, b^3,c^3)|` = (a-b)(b-c)(c-a)(a+b+c)


By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


Using properties of determinants, prove that:

`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` =  (β – γ) (γ – α) (α – β) (α + β + γ)


Using properties of determinants, prove that `|(x,x+y,x+2y),(x+2y, x,x+y),(x+y, x+2y, x)| = 9y^2(x + y)`


Using properties of determinants, prove that \[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\] .


Using properties of determinants, prove that

`|[b+c , a ,a  ] ,[ b , a+c, b ] ,[c , c, a+b ]|` = 4abc 


Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


Prove that `|(x + y, y + z, z + x),(z + x, x + y, y + z),(y + z, z + x, x + y)| = 2|(x, y, z),(z, x, y),(y, z, x)|`


If  `|(4 + x, 4 - x, 4 - x),(4 - x,4 + x,4 - x),(4 - x,4 - x, 4 + x)|` = 0, then find the values of x.


Evaluate: `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`


Prove that: `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0


The maximum value of Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` is ______. (θ is real number)


The determinant `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` is equal to zero.


Let Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, then Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32.


If a, b, c are the roots of the equation x3 - 3x2 + 3x + 7 = 0, then the value of `abs((2 "bc - a"^2, "c"^2, "b"^2),("c"^2, 2 "ac - b"^2, "a"^2),("b"^2, "a"^2, 2 "ab - c"^2))` is ____________.


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


A number consists of two digits and the digit in the ten's place exceeds that in the unit's place by 5. If 5 times the sum of the digits be subtracted from the number, the digits of the number are reversed. Then the sum of digits of the number is:


If f(α) = `[(cosα, -sinα, 0),(sinα, cosα, 0),(0, 0, 1)]`, prove that f(α) . f(– β) = f(α – β).


By using properties of determinant prove that

`|(x+ y,y+z, z+x ),(z, x,y),(1,1,1)|` = 0 


Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding evaluate the following determinant.

`|(1, a, b+c),(1, b, c+a),(1, c, a+b)|`


if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×