Advertisements
Advertisements
Question
If `(x^(1/2) + x^(- 1/2))^2 = 9/2` then find the value of `(x^(1/2) - x^(-1/2))` for x >1
Solution
Given `(x^(1/2) + x^(- 1/2))^2 = 9/2`
`(x^(1/2))^2 + (x^(-1/2))^2 + 2(x^(1/2))(x^(-1/2)) = 9/2`
`x^(1/2 xx 2) + x^(- 1/2 xx 2) + 2x^(1/2) xx 1/(x^(1/2)) = 9/2`
x1 + x–1 + 2 = `9/2`
`x + 1/x = 9/2 - 2`
`x + 1/x = (9 - 4)/2`
= `5/2` ......(1)
Consider `(x^(1/2) - x^(-1/2))^2`
`(x^(1/2) - x^(-1/2))^2 = (x^(1/2))^2 + (x^(-1/2))^2 - 2x^(1/2) xx x^(-1/2)`
= `x^(1/2 xx 2) + x^(-1/2 xx 2) - 2x^(1/2) xx 1/(x^(1/2))`
= x1 + x–1 – 2
= `x + 1/x - 2`
= `5/2 - 2`
By equation (1)
= `(5 - 4)/2`
= `1/2`
∴ `x^(1/2) - x^(-1/2) = +- sqrt(1/2)`
`x^(1/2) - x^(-1/2) = +- 1/sqrt(2)`
`x^(1/2) - x^(-1/2) = 1/sqrt(2)`
Since x > 1
APPEARS IN
RELATED QUESTIONS
Simplify: `(125)^(2/3)`
Simplify: `16^((-3)/4)`
Simplify: `(- 1000)^((-2)/3)`
Simplify: `(3^-6)^(1/3)`
Simplify: `(27^((-2)/3))/(27^((-1)/3))`
Evaluate `[((256)^(-1/2))^((-1)/4)]^3`
Simplify and hence find the value of n:
`(3^(2"n")*9^2*3^(-"n"))/(3^(3"n"))` = 27
Find the radius of the spherical tank whose volume is `(32pi)/3` units
. Simplify by rationalising the denominator `(7 + sqrt(6))/(3 - sqrt(2))`
Simplify `1/(3 - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - 2)`
If x = `sqrt(2) + sqrt(3)` find `(x^2 + 1)/(x^2 - 2)`