Advertisements
Advertisements
Question
Simplify `1/(3 - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - 2)`
Solution
Let P = `1/(3 - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - 2)` ......(1)
`1/(3 - sqrt(8)) = 1/(3 - sqrt(8)) xx (3 + sqrt(8))/(3 + sqrt(8))`
= `(3 + sqrt(8))/(3^2 - (sqrt(8))^2`
`1/(3 - sqrt(8)) = (3 + sqrt(8))/(9 - 8)`
= `3 + sqrt(8)` ......(2)
`1/(sqrt(8) - sqrt(7)) = 1/(sqrt(8) - sqrt(7)) xx (sqrt(8) + sqrt(7))/(sqrt(8) + sqrt(7))`
= `(sqrt(8) + sqrt(7))/((sqrt(8))^2 - (sqrt(7))^2`
`1/(sqrt(8) - sqrt(7)) = (sqrt(8) + sqrt(7))/(8 - 7)`
= `sqrt(8) + sqrt(7)` .....(3)
`1/(sqrt(7) - sqrt(6)) = 1/(sqrt(7) - sqrt(6)) xx (sqrt(7) + sqrt(6))/(sqrt(7) + sqrt(6))`
= `(sqrt(7) + sqrt(6))/((sqrt(7))^2 - (sqrt(6))^2`
`1/(sqrt(7) - sqrt(6)) = (sqrt(7) + sqrt(6))/(7 - 6)`
= `sqrt(7) + sqrt(6)` ......(4)
`1/(sqrt(6) - sqrt(5)) = 1/(sqrt(6) - sqrt(5)) xx (sqrt(6) + sqrt(5))/(sqrt(6) + sqrt(5))`
= `(sqrt(6) + sqrt(5))/((sqrt(6))^2 - (sqrt(5))^2`
`1/(sqrt(6) - sqrt(5)) = (sqrt(6) + sqrt(5))/(6 - 5)`
= `sqrt(6) + sqrt(5)` ......(5)
`1/(sqrt(5) - 2) = 1/(sqrt(5) - 2) xx (sqrt(5) + 2)/(sqrt(5) + 2)`
= `(sqrt(5) + 2)/((sqrt(5))^2 - 2^2`
`1/(sqrt(5) - 2) = (sqrt(5) + 2)/(5 - 4)`
= `sqrt(5) + 2` ......(6)
Using equations (2), (3), (4), (5) and (6)
By Equation (1)
P = `(3 + sqrt(8)) - (sqrt(8) + sqrt(7)) + (sqrt(7) + sqrt(6)) - (sqrt(6) + sqrt(5)) + (sqrt(5) + 2)`
P = `3 + sqrt(8) - sqrt(8) - sqrt(7) + sqrt(7) + sqrt(6) - sqrt(6) - sqrt(5) + sqrt(5) + 2`
P = 3 + 2
= 5
APPEARS IN
RELATED QUESTIONS
Simplify: `(125)^(2/3)`
Simplify: `16^((-3)/4)`
Simplify: `(- 1000)^((-2)/3)`
Simplify: `(3^-6)^(1/3)`
Simplify: `(27^((-2)/3))/(27^((-1)/3))`
Evaluate `[((256)^(-1/2))^((-1)/4)]^3`
If `(x^(1/2) + x^(- 1/2))^2 = 9/2` then find the value of `(x^(1/2) - x^(-1/2))` for x >1
Simplify and hence find the value of n:
`(3^(2"n")*9^2*3^(-"n"))/(3^(3"n"))` = 27
Find the radius of the spherical tank whose volume is `(32pi)/3` units
. Simplify by rationalising the denominator `(7 + sqrt(6))/(3 - sqrt(2))`
If x = `sqrt(2) + sqrt(3)` find `(x^2 + 1)/(x^2 - 2)`