Advertisements
Advertisements
Question
Simplify and hence find the value of n:
`(3^(2"n")*9^2*3^(-"n"))/(3^(3"n"))` = 27
Solution
Given
`(3^(2"n")*9^2*3^(-"n"))/(3^(3"n"))` = 27
`(3^(2"n" - "n")*(3^2)^2)/(3^(3"n"))` = 33
`3^"n"*(3^2)^2*3^(-3"n")` = 33
`3^"n"*3^4*3^(-3"n")` = 33
`3^("n" + 4 - 3"n")` = 33
`3^(4 - 2"n")` = 33
4 – 2n = 3
2n = 4 – 3
2n = 1
n = `1/2`
APPEARS IN
RELATED QUESTIONS
Simplify: `(125)^(2/3)`
Simplify: `16^((-3)/4)`
Simplify: `(- 1000)^((-2)/3)`
Simplify: `(3^-6)^(1/3)`
Simplify: `(27^((-2)/3))/(27^((-1)/3))`
Evaluate `[((256)^(-1/2))^((-1)/4)]^3`
If `(x^(1/2) + x^(- 1/2))^2 = 9/2` then find the value of `(x^(1/2) - x^(-1/2))` for x >1
Find the radius of the spherical tank whose volume is `(32pi)/3` units
. Simplify by rationalising the denominator `(7 + sqrt(6))/(3 - sqrt(2))`
Simplify `1/(3 - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - 2)`
If x = `sqrt(2) + sqrt(3)` find `(x^2 + 1)/(x^2 - 2)`