Advertisements
Advertisements
Question
In a newly developed city, it is estimated that the voting population (in thousands) will increase according to V(t) = 30 + 12t2 – t3, 0 ≤ t ≤ 8 where t is the time in years. Find the approximate change in voters for the time change from 4 to `4 1/6` years
Solution
V(t) = 30 + 12t2 – t3
dt = `4 1/6 - 4 = 1/6`
V’(t) = (24t – 3t2)dt
= `(24(4) - 3(4)^2) xx 1/6`
= `(96 - 48) xx 1/6`
= `48 xx 1/6`
= 8
Voters in thousands
∴ Approximate change of voters = 8 × 1000 = 8000
APPEARS IN
RELATED QUESTIONS
Let f(x) = `root(3)(x)`. Find the linear approximation at x = 27. Use the linear approximation to approximate `root(3)(27.2)`
Use the linear approximation to find approximate values of `(123)^(2/3)`
Use the linear approximation to find approximate values of `root(4)(15)`
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Absolute error
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Percentage error
The time T, taken for a complete oscillation of a single pendulum with length l, is given by the equation T = `2pi sqrt(l/g)` where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of l
Show that the percentage error in the nth root of a number is approximately `1/"n"` times the percentage error in the number
Find the differential dy for the following functions:
y = `(1 - 2x)^3/(3 - 4x)`
Find the differential dy for the following functions:
y = `"e"^(x^2 - 5x + 7) cos(x^2 - 1)`
The trunk of a tree has a diameter of 30 cm. During the following year, the circumference grew 6 cm. Approximately how much did the tree diameter grow?
The trunk of a tree has a diameter of 30 cm. During the following year, the circumference grew 6 cm. What is the percentage increase in the area of the cross-section of the tree?
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 1 to 1.1 hours?
A coat of paint of thickness 0.2 cm is applied to the faces of cube whose edge is 10 cm. Use the differentials to find approximately how many cubic centimeters of paint is used to paint this cube. Also calculate the exact amount of paint used to paint this cube
Choose the correct alternative:
A circular template has a radius of 10 cm. The measurement of the radius has an approximate error of 0.02 cm. Then the percentage error in the calculating the area of this template is
Choose the correct alternative:
The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?
Choose the correct alternative:
If u(x, y) = `"e"^(x^2 + y^2)`, then `(delu)/(delx)` is equal to
Choose the correct alternative:
If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is
Choose the correct alternative:
The approximate change in volume V of a cube of side x meters caused by increasing the side by 1% is
Choose the correct alternative:
Linear approximation for g(x) = cos x at x = `pi/2` is