Advertisements
Advertisements
Question
In a ΔABC, ∠C = 3 ∠B = 2 (∠A + ∠B). Find the three angles.
Solution
Given that,
∠C = 3∠B = 2(∠A + ∠B)
3∠B = 2(∠A + ∠B)
3∠B = 2∠A + 2∠B
∠B = 2∠A
2 ∠A − ∠B = 0 … (i)
We know that the sum of the measures of all angles of a triangle is 180°. Therefore,
∠A + ∠B + ∠C = 180°
∠A + ∠B + 3 ∠B = 180°
∠A + 4 ∠B = 180° … (ii)
Multiplying equation (i) by 4, we obtain
8 ∠A − 4 ∠B = 0 … (iii)
Adding equations (ii) and (iii), we obtain
9 ∠A = 180°
∠A = 20°
From equation (ii), we obtain
20° + 4 ∠B = 180°
4 ∠B = 160°
∠B = 40°
∠C = 3 ∠B
= 3 × 40° = 120°
Therefore, ∠A, ∠B, ∠C are 20°, 40°, and 120° respectively.
APPEARS IN
RELATED QUESTIONS
Solve the following systems of equations
(i)`\frac{15}{u} + \frac{2}{v} = 17`
`\frac{1}{u} + \frac{1}{v} = \frac{36}{5}`
(ii) ` \frac{11}{v} – \frac{7}{u} = 1`
`\frac{9}{v} + \frac{4}{u} = 6`
Solve the following pairs of equations by reducing them to a pair of linear equations
`1/(3x+y) + 1/(3x-y) = 3/4`
`1/(2(3x-y)) - 1/(2(3x-y)) = (-1)/8`
Formulate the following problems as a pair of equations, and hence find their solutions:
Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current
Solve the following pair of linear equations.
152x − 378y = − 74
− 378x + 152y = − 604
On selling a T.V. at 5% gain and a fridge at 10% gain, a shopkeeper gains Rs 2000. But if he sells the T.V. at 10% gain the fridge at 5% loss. He gains Rs 1500 on the transaction. Find the actual prices of T.V. and fridge.
The sum of a two digit number and the number obtained by reversing the order of its digits is 99. If the digits differ by 3, find the number.
A two-digit number is such that the product of its digits is 20. If 9 is added to the number, the digits interchange their places. Find the number.
Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is `x/y`
If the numerator is multiplied by 2 and the denominator is reduced by 5, the fraction becomes `6/5`. Thus, we have
`(2x)/(y-5)=6/5`
`⇒ 10x=6(y-5)`
`⇒ 10x=6y-30`
`⇒ 10x-6y+30 =0`
`⇒ 2(5x-3y+15)=0`
`⇒ 5x - 3y+15=0`
If the denominator is doubled and the numerator is increased by 8, the fraction becomes `2/5`. Thus, we have
`(x+8)/(2y)=2/5`
`⇒ 5(x+8)=4y`
`⇒ 5x+40=4y`
`⇒ 5x-4y+40=0`
So, we have two equations
`5x-3y+15=0`
`5x-4y+40=0`
Here x and y are unknowns. We have to solve the above equations for x and y.
By using cross-multiplication, we have
`x/((-3)xx40-(-4)xx15)=-y/(5xx40-5xx15)=1/(5xx(-4)-5xx(-3))`
`⇒ x/(-120+60)=(-y)/(200-75)=1/(-20+15)`
`⇒x/(-60)=-y/125``=1/-5`
`⇒ x= 60/5,y=125/5`
`⇒ x=12,y=25`
Hence, the fraction is `12/25`
The sum of a numerator and denominator of a fraction is 18. If the denominator is increased by 2, the fraction reduces to 1/3. Find the fraction.
The sum of the numerator and denominator of a fraction is 4 more than twice the numerator. If the numerator and denominator are increased by 3, they are in the ratio 2 : 3. Determine the fraction.