English

In the Given Below Fig, Rays Oa, Ob, Oc, Op and 0e Have the Common End Point O. Show that ∠Aob + ∠Boc + ∠Cod + ∠Doe + ∠Eoa = 360°. - Mathematics

Advertisements
Advertisements

Question

In the given below fig, rays OA, OB, OC, OP and 0E have the common end point O. Show
that ∠AOB + ∠BOC + ∠COD + ∠DOE + ∠EOA = 360°.

Answer in Brief

Solution 1

Given that

Rays OA, OB, OD and OE have the common end point O.

A ray of opposite to OA is drawn

Since `∠`AOB, `∠`BOF are linear pairs

`∠`AOB + `∠`BOF = 180°

`∠`AOB + `∠`BOC + `∠`COF = 180°

Also

`∠`AOE, `∠`EOF are linear pairs

`∠`AOE + `∠`EOF = 180°

`∠`AOE + `∠`DOF + `∠`DOE = 180°

By adding (1) and (2) quations we get                       

`∠`AOB + `∠`BOC + `∠`COF + `∠`AOE + `∠`DOF + `∠`DOE = 360°

`∠`AOB + `∠`BOC + `∠`COD + `∠`DOE + `∠`EOA = 360°

Hence proved.

shaalaa.com

Solution 2

Let us draw AOXa straight line.

∠AOE,∠DOE and ∠DOXform a linear pair. Thus, their sum should be equal to180°.

Or, we can say that:

 ∠AOE +∠DOE +∠DOX  = 180°   (I)

Similarly,, ∠AOB,∠BOC and ∠COXform a linear pair. Thus, their sum should be equal to180°.

Or, we can say that:

 ∠AOB +∠BOC+ ∠COX =  180°       (II)

On adding (I) and (II), we get:

∠AOB +∠BOC + ∠COX +∠DOX +∠AOE +∠DOE = 180°+180°

∠AOB +∠BOC + ∠COD +∠AOE +∠DOE = 360°

Hence proved.

shaalaa.com
Introduction to Lines and Angles
  Is there an error in this question or solution?
Chapter 10: Lines and Angles - Exercise 10.2 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 10 Lines and Angles
Exercise 10.2 | Q 4 | Page 14
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×