Advertisements
Advertisements
Question
In the figure, a circle with center C has m(arc AXB) = 100° then find central ∠ACB and measure m(arc AYB).
Solution
In the given figure, m(arc AXB) = ∠ACB ......[Definition of measure of minor arc]
∴ ∠ACB = 100°
m(arc AXB) + m(arc AYB) = 360° ......[Measure of complete circle is 360°]
∴ 100° + m(arc AYB) = 360°
∴ m(arc AYB) = 360° – 100°
∴ m(arc AYB) = 260°
APPEARS IN
RELATED QUESTIONS
In the adjoining figure chord EF || chord GH.
Prove that chord EG ≅ chord FH.
Fill in the boxes and write the complete proof.
In the given figure, O is the centre of the circle, ∠QPR = 70° and m(arc PYR) = 160°, then find the value of the following m(arc QXR).
In the given figure, O is centre of circle. ∠QPR = 70° and m(arc PYR) = 160°, then find the value of the following ∠QOR.
In the given figure, O is centre of circle, ∠QPR = 70° and m(arc PYR) = 160°, then find the value of the following ∠PQR.
A circle with centre P is inscribed in the ABC. Side AB, side BC and side AC touch the circle at points L, M and N respectively. Radius of the circle is r.
Prove that: `"A" (triangle "ABC") =1/2 ("AB" + "BC" + "AC") xx "r"`
In the figure, if the chord PQ and chord RS intersect at point T, prove that: m∠STQ = `1/2` [m(arc PR) + m(arc SQ)] for any measure of ∠STQ by filling out the boxes
Proof: m∠STQ = m∠SPQ + `square` .....[Theorem of the external angle of a triangle]
= `1/2` m(arc SQ) + `square` .....[Inscribed angle theorem]
= `1/2 [square + square]`
Prove that angles inscribed in the same arc are congruent.
Given: In a circle with center C, ∠PQR and ∠PSR are inscribed in same arc PQR. Arc PTR is intercepted by the angles.
To prove: ∠PQR ≅ ∠PSR.
Proof:
m∠PQR = `1/2 xx ["m"("arc PTR")]` ......(i) `square`
m∠`square` = `1/2 xx ["m"("arc PTR")]` ......(ii) `square`
m∠`square` = m∠PSR .....[By (i) and (ii)]
∴ ∠PQR ≅ ∠PSR
In the figure, seg AB is a diameter of a circle with centre O. The bisector of ∠ACB intersects the circle at point D. Prove that, seg AD ≅ seg BD. Complete the following proof by filling in the blanks.
Proof:
Draw seg OD.
∠ACB = `square` ......[Angle inscribed in semicircle]
∠DCB = `square` ......[CD is the bisector of ∠C]
m(arc DB) = `square` ......[Inscribed angle theorem]
∠DOB = `square` ......[Definition of measure of an arc](i)
seg OA ≅ seg OB ...... `square` (ii)
∴ Line OD is `square` of seg AB ......[From (i) and (ii)]
∴ seg AD ≅ seg BD
In the figure, chord LM ≅ chord LN, ∠L = 35°.
Find
(i) m(arc MN)
(ii) m(arc LN)
In the figure, if O is the center of the circle and two chords of the circle EF and GH are parallel to each other. Show that ∠EOG ≅ ∠FOH
In the figure, the centre of the circle is O and ∠STP = 40°.
- m (arc SP) = ? By which theorem?
- m ∠SOP = ? Give reason.
In the above figure, ∠L = 35°, find :
- m(arc MN)
- m(arc MLN)
Solution :
- ∠L = `1/2` m(arc MN) ............(By inscribed angle theorem)
∴ `square = 1/2` m(arc MN)
∴ 2 × 35 = m(arc MN)
∴ m(arc MN) = `square` - m(arc MLN) = `square` – m(arc MN) ...........[Definition of measure of arc]
= 360° – 70°
∴ m(arc MLN) = `square`