Advertisements
Advertisements
Question
In what ratio is the line segment joining the points A(-2, -3) and B(3,7) divided by the yaxis? Also, find the coordinates of the point of division.
Solution
Let AB be divided by the x-axis in the ratio :1 k at the point P.
Then, by section formula the coordination of P are
`p = ((3k-2)/(k+1) , (7k-3)/(k+1))`
But P lies on the y-axis; so, its abscissa is 0.
Therefore , `(3k-2)/(k+1) = 0`
`⇒ 3k-2 = 0 ⇒3k=2 ⇒ k = 2/3 ⇒ k = 2/3 `
Therefore, the required ratio is `2/3:1`which is same as 2 : 3
Thus, the x-axis divides the line AB in the ratio 2 : 3 at the point P.
Applying `k= 2/3,` we get the coordinates of point.
`p (0,(7k-3)/(k+1))`
`= p(0, (7xx2/3-3)/(2/3+1))`
`= p(0, ((14-9)/3)/((2+3)/3))`
`= p (0,5/5)`
= p(0,1)
Hence, the point of intersection of AB and the x-axis is P (0,1).
APPEARS IN
RELATED QUESTIONS
The three vertices of a parallelogram are (3, 4) (3, 8) and (9, 8). Find the fourth vertex.
Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:
A(-1,-2) B(1, 0), C (-1, 2), D(-3, 0)
The points (3, -4) and (-6, 2) are the extremities of a diagonal of a parallelogram. If the third vertex is (-1, -3). Find the coordinates of the fourth vertex.
Show that the following points are the vertices of a square:
A (0,-2), B(3,1), C(0,4) and D(-3,1)
If (2, p) is the midpoint of the line segment joining the points A(6, -5) and B(-2,11) find the value of p.
The line segment joining A( 2,9) and B(6,3) is a diameter of a circle with center C. Find the coordinates of C
In what ratio does the point P(2,5) divide the join of A (8,2) and B(-6, 9)?
Find the area of quadrilateral PQRS whose vertices are P(-5, -3), Q(-4,-6),R(2, -3) and S(1,2).
Find the coordinates of the circumcentre of a triangle whose vertices are (–3, 1), (0, –2) and (1, 3).
The area of the triangle formed by the points A(2,0) B(6,0) and C(4,6) is
If (a,b) is the mid-point of the line segment joining the points A (10, - 6) , B (k,4) and a - 2b = 18 , find the value of k and the distance AB.
If the vertices of a triangle are (1, −3), (4, p) and (−9, 7) and its area is 15 sq. units, find the value(s) of p.
Find the value of k if points A(k, 3), B(6, −2) and C(−3, 4) are collinear.
what is the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\] .
The perimeter of the triangle formed by the points (0, 0), (0, 1) and (0, 1) is
If points A (5, p) B (1, 5), C (2, 1) and D (6, 2) form a square ABCD, then p =
If (−2, 1) is the centroid of the triangle having its vertices at (x , 0) (5, −2), (−8, y), then x, y satisfy the relation
The coordinates of the fourth vertex of the rectangle formed by the points (0, 0), (2, 0), (0, 3) are
The ratio in which the line segment joining points A (a1, b1) and B (a2, b2) is divided by y-axis is
What is the form of co-ordinates of a point on the X-axis?