Advertisements
Advertisements
Question
what is the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\] .
Solution
The co-ordinates of the vertices are (a, b); (b, c) and (c, a)
The co-ordinate of the centroid is (0, 0)
We know that the co-ordinates of the centroid of a triangle whose vertices are `(x_1 , y_1 ) ,(x_2 ,y_2 ) , (x_3 , y_3)` is-
`((x_1 + x_2 + x_3 ) / 3 , (y_1 + y_2 +y_3 ) / 3)`
So,
`( 0 , 0) = ((a + b +c ) / 3 , ( b +c +a ) / 3 )`
Compare individual terms on both the sides-
`(a + b+ c ) / 3 = 0`
Therefore,
a + b + c = 0
We have to find the value of -
=`(a^2)/(bc) + (b^2)/(ca) + (c^2)/(ab) `
Multiply and divide it by (abc) to get,
` = (1/(abc)) ( a^3 + b^3 + c^3 )`
Now as we know that if,
a + b + c = 0
Then,
`a^3 + b^3 + c^3 = 3abc`
So,
`(a^2 ) /( bc) +(b^2)/(ca) + (c^2)/(ab) = (1/(abc)) (a^3 + b^3 +c^3)`
`= (1/(abc))(3abc)`
= 3
APPEARS IN
RELATED QUESTIONS
On which axis do the following points lie?
S(0,5)
Find the points of trisection of the line segment joining the points:
(3, -2) and (-3, -4)
Find the ratio in which the line segment joining (-2, -3) and (5, 6) is divided by x-axis Also, find the coordinates of the point of division in each case.
Find the co-ordinates of the point equidistant from three given points A(5,3), B(5, -5) and C(1,- 5).
Prove hat the points A (2, 3) B(−2,2) C(−1,−2), and D(3, −1) are the vertices of a square ABCD.
If (a,b) is the mid-point of the line segment joining the points A (10, - 6) , B (k,4) and a - 2b = 18 , find the value of k and the distance AB.
If the points P, Q(x, 7), R, S(6, y) in this order divide the line segment joining A(2, p) and B(7, 10) in 5 equal parts, find x, y and p.
Show that A (−3, 2), B (−5, −5), C (2,−3), and D (4, 4) are the vertices of a rhombus.
If the point \[C \left( - 1, 2 \right)\] divides internally the line segment joining the points A (2, 5) and B( x, y ) in the ratio 3 : 4 , find the value of x2 + y2 .
What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?
If points Q and reflections of point P (−3, 4) in X and Y axes respectively, what is QR?
Write the condition of collinearity of points (x1, y1), (x2, y2) and (x3, y3).
If x is a positive integer such that the distance between points P (x, 2) and Q (3, −6) is 10 units, then x =
The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is
If the distance between the points (4, p) and (1, 0) is 5, then p =
A line segment is of length 10 units. If the coordinates of its one end are (2, −3) and the abscissa of the other end is 10, then its ordinate is
If point P is midpoint of segment joining point A(– 4, 2) and point B(6, 2), then the coordinates of P are ______
Point (0, –7) lies ______.
Ordinate of all points on the x-axis is ______.
If the coordinate of point A on the number line is –1 and that of point B is 6, then find d(A, B).