Advertisements
Advertisements
प्रश्न
what is the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\] .
उत्तर
The co-ordinates of the vertices are (a, b); (b, c) and (c, a)
The co-ordinate of the centroid is (0, 0)
We know that the co-ordinates of the centroid of a triangle whose vertices are `(x_1 , y_1 ) ,(x_2 ,y_2 ) , (x_3 , y_3)` is-
`((x_1 + x_2 + x_3 ) / 3 , (y_1 + y_2 +y_3 ) / 3)`
So,
`( 0 , 0) = ((a + b +c ) / 3 , ( b +c +a ) / 3 )`
Compare individual terms on both the sides-
`(a + b+ c ) / 3 = 0`
Therefore,
a + b + c = 0
We have to find the value of -
=`(a^2)/(bc) + (b^2)/(ca) + (c^2)/(ab) `
Multiply and divide it by (abc) to get,
` = (1/(abc)) ( a^3 + b^3 + c^3 )`
Now as we know that if,
a + b + c = 0
Then,
`a^3 + b^3 + c^3 = 3abc`
So,
`(a^2 ) /( bc) +(b^2)/(ca) + (c^2)/(ab) = (1/(abc)) (a^3 + b^3 +c^3)`
`= (1/(abc))(3abc)`
= 3
APPEARS IN
संबंधित प्रश्न
On which axis do the following points lie?
R(−4,0)
Find the point on x-axis which is equidistant from the points (−2, 5) and (2,−3).
Prove that the points (3, -2), (4, 0), (6, -3) and (5, -5) are the vertices of a parallelogram.
If the coordinates of the mid-points of the sides of a triangle be (3, -2), (-3, 1) and (4, -3), then find the coordinates of its vertices.
Determine the ratio in which the point (-6, a) divides the join of A (-3, 1) and B (-8, 9). Also, find the value of a.
Find the area of a quadrilateral ABCD whose vertices area A(3, -1), B(9, -5) C(14, 0) and D(9, 19).
Find the area of quadrilateral ABCD whose vertices are A(-3, -1), B(-2,-4) C(4,-1) and D(3,4)
Points A(-1, y) and B(5,7) lie on the circle with centre O(2, -3y).Find the value of y.
Find the value of a, so that the point ( 3,a ) lies on the line represented by 2x - 3y =5 .
Find the value of k if points A(k, 3), B(6, −2) and C(−3, 4) are collinear.
If the points A(1, –2), B(2, 3) C(a, 2) and D(– 4, –3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.
\[A\left( 6, 1 \right) , B(8, 2) \text{ and } C(9, 4)\] are three vertices of a parallelogram ABCD . If E is the mid-point of DC , find the area of \[∆\] ADE.
Find the value of a so that the point (3, a) lies on the line represented by 2x − 3y + 5 = 0
If A (5, 3), B (11, −5) and P (12, y) are the vertices of a right triangle right angled at P, then y=
The ratio in which the x-axis divides the segment joining (3, 6) and (12, −3) is
The line segment joining the points A(2, 1) and B (5, - 8) is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by 2x - y + k= 0 find the value of k.
Write the equations of the x-axis and y-axis.
Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal in the drill in such a way that he is equidistant from each of the four students A, B, C and D? If so, what should be his position?
Signs of the abscissa and ordinate of a point in the second quadrant are respectively.