Advertisements
Advertisements
Question
कोई किसान एक पुराने ट्रैक्टर को ₹ 12000 में खरीदता है। वह ₹ 6000 नकद भुगतान करता है और शेष राशि को ₹ 500 की वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 12% वार्षिक ब्याज भी देता है। किसान को ट्रैक्टर की कुल कितनी कीमत देनी पड़ेगी?
Solution
पुराने ट्रैक्टर का मूल्य = ₹ 12000
नकद भुगतान = ₹ 6000
शेष = ₹ 12000 – ₹ 6000 = ₹ 6000
एक किस्त का भुगतान = ₹ 500
कुल किस्तें = `6000/12 = 12`
P मूलधन पर 12% प्रतिवर्ष की दर से 1 वर्ष का ब्याज = `("p" xx 12 xx 1)/100 = 3/25 "P"`
एक वर्ष बाद राशि का भुगतान = 500 + ब्याज
= `500 + 3/25 xx 6000`
दो वर्ष बाद ब्याज = `3/25 xx 5500` रूपये किस्त
2 वर्ष बाद भुगतान = `(500 + 3/25 xx 5500) "रू"`
12 वर्ष बाद किस्त = 12 × 500 = 6000
ब्याज = `3/25 (6000 + 5500 + 5000 + ...... 12 "पदों तक")`
= `3/25 xx 12/2 [12000 - (12 - 1) xx 500]`
= `3/25 xx 12/2 [12000 - 5500]`
= `3/25 xx 12/2 xx 6500`
= ₹ 4680
कुल भुगतान = ₹ (12000 + 4680)
= ₹ 16680
APPEARS IN
RELATED QUESTIONS
1 से 2001 तक के विषम पूर्णांकों का योग ज्ञात कीजिए।
100 तथा 1000 के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो 5 के गुणज हों।
किसी समांतर श्रेणी में प्रथम पद 2 है तथा प्रथम पाँच पदों का योगफल, अगले पाँच पदों के योगफल का एक चौथाई है। दर्शाइए कि 20वाँ पद −112 है।
समांतर श्रेणी −6, `-11/2`, −5, ..... के कितने पदों का योगफल –25 है?
किसी समांतर श्रेणी का pवाँ पद `1/"q"` तथा qवाँ पद `1/"p"`, हो तो सिद्ध कीजिए कि प्रथम pq पदों का योग `1/2 ("pq" + 1)` होगा जहाँ p ≠ q
उस समांतर श्रेणी के n पदों का योगफल ज्ञात कीजिए, जिसका k वाँ पद 5k + 1 है।
यदि किसी समांतर श्रेणी के n पदों का योगफल (pn + qn2), है, जहाँ p तथा q अचर हों तो सार्व अंतर ज्ञात कीजिए।
दो समांतर श्रेणियों के n पदों के योगफल का अनुपात 5n + 4 : 9n + 6 हो, तो उनके 18 वें पदों का अनुपात ज्ञात कीजिए।
यदि किसी समांतर श्रेणी के nवें पदों का योगफल 3n2 + 5n हैं तथा इसका mवाँ पद 164 है, तो m का मान ज्ञात कीजिए।
यदि किसी समांतर श्रेणी के प्रथम p पदों का योग, प्रथम q पदों के योगफल के बराबर हो तो प्रथम (p + q) पदों का योगफल ज्ञात कीजिए।
यदि किसी समांतर श्रेणी के प्रथम p, q, r पदों का योगफल क्रमशः a, b, तथा c, हो तो सिद्ध कीजिए कि: `"a"/"p"("q" - "r") + "b"/"q"("r" - "p") + "c"/"r"("p" - "q") = 0`
यदि `("a"^"n" + "b"^"n")/("a"^("n"- 1) + "b"^("n" - 1))`, a तथा b के मध्य समांतर माध्य हो तो n का मान ज्ञात कीजिए।
एक बहुभुज के दो क्रमिक अंत: कोणों का अंतर 5° है। यदि सबसे छोटा कोण 120° हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।
दर्शाइए कि किसी समांतर श्रेणी के (m + n)वें तथा (m – n)वें पदों का योग mवें पद का दुगुना है।
यदि किसी समांतर श्रेणी की तीन संख्याओं का योग 24 है तथा उनका गुणनफल 440 है, तो संख्याएँ ज्ञात कीजिए।
दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको 4 से विभाजित करने पर शेषफल 1 हो।
एक समांतर श्रेणी के प्रथम चार पदों का योगफल 56 है। अंतिम चार पदों का योगफल 112 है। यदि इसका प्रथम पद 11 है, तो पदों की संख्या ज्ञात कीजिए।
किसी समांतर श्रेणी का pवाँ, qवाँ, rवाँ पद क्रमशः a, b, c हैं, तो सिद्ध कीजिए
(q – r)a + (r – p)b + (p – q) c = 0
यदि `"a"(1/"b" + 1/"c"), "b"(1/"c" + 1/"a"), "c"(1/"a" + 1/"b")` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, b, c समांतर श्रेणी में हैं।
शमशाद अली 22000 रूपये में एक स्कूटर खरीदता है। वह 4000 रूपये नकद देता है तथा शेष राशि को 1000 रूपये वार्षिक किश्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 10% वार्षिक ब्याज भी देता है। उसे स्कूटर के लिए कुल कितनी राशि चुकानी पड़ेगी?
एक आदमी ने एक बैंक में 10000 रूपये 5% वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, 15वें वर्ष में उसके खाते में कितनी रकम हो गई तथा 20 वर्षों बाद कुल कितनी रकम हो गई, ज्ञात कीजिए।
किसी कार्य को कुछ दिनों में पूरा करने के लिए 150 कर्मचारी लगाए गए। दूसरे दिन 4 कर्मचारियों ने काम छोड़ दिया, तीसरे दिन 4 और कर्मचारियों ने काम छोड़ दिया तथा इस प्रकार अन्य। अब कार्य पूर्ण करने में 8 दिन अधिक लगते हैं, तो दिनों की संख्या ज्ञात कीजिए, जिनमें कार्य पूरा किया गया।