English

मान लीजिए कि A एक परिमित समुच्चय है, तो A से स्वयं A में प्रत्येक एकैक फलन आच्छादी नहीं है। - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए कि A एक परिमित समुच्चय है, तो A से स्वयं A में प्रत्येक एकैक फलन आच्छादी नहीं है।

Options

  • सत्य 

  • असत्य

MCQ
True or False

Solution

 यह विधान असत्य है।

shaalaa.com
संबंध एवं फलन
  Is there an error in this question or solution?
Chapter 1: संबंध एव फलन - हल किये हुए उदाहरण [Page 11]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 1 संबंध एव फलन
हल किये हुए उदाहरण | Q 31 | Page 11

RELATED QUESTIONS

यदि f : R → R जहाँ f(x) = x2 - 3x + 2 द्वारा परिभाषित है तो f(f(x)) ज्ञात कीजिए |


समुच्चय A = {1, 2, 3}, के लिए एक संबंध निचे लिखे अनुसार परिभाषित कीजिए:

R = {(1, 1), (2, 2), (3, 3), (1, 3)}

उन क्रमित युग्मों को लिखिए जिनको R में जोड़ने से वह न्यूनतम (छोटे से छोटा) तुल्यता संबंध बन जाए।


यदि A = {a, b, c, d} तथा f = {a, b), (b, d), (c, a), (d, c)} तो सिद्ध कीजिए कि f एकैकी है तथा A से A पर आच्छादि है। f –1 भी ज्ञात कीजिए।


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

a, b ∈ Q के लिए a * b = ab2


मान लीजिए कि f: R → R, f(x) = 3x – 4, द्वारा परिभषित हैं, तो f–1(x)


मान लीजिए कि Z पूर्णांकों का समुच्चय है तथा R, Z में परिभाषित एक संबंध इस प्रकार है aRb, कि यदि a – b भाज्य है 3 से, तो R समुच्चय Z को ______ युगलत: असंयुक्त उप-समुच्चयों में विभाजन करता है।


समुच्चय A = {1, 2, 3} तथा R = {(1, 2), (1, 3)} पर विचार कीजिए। R एक संक्रामक संबंध है।


मान लीजिए कि A = {a, b, c} तथा A में परिभाषित संबंध R निम्नलिखित है:

R = {(a, a), (b, c), (a, b)}. तो उन क्रमित युग्मों की, कम से कम, संख्या लिखिए, जिनको R में जोड़ने से R स्वतुल्य तथा संक्रामक बन जाता है।


क्या g = {(1, 1), (2, 3), (3, 5), (4, 7)} एक फलन है? यदि g, g (x) = αx + β द्वारा वर्णित है, तो α तथा β का मान क्या निर्धारित होना चाहिए?


मान लीजिए C सम्मिश्र संख्याओं का समुच्चय है। सिद्ध कीजिए कि f(z) = |z|, z C द्वारा दिया गया प्रतिचित्रण f: C → R न तो एकैकी है और न ही आच्छादक (आच्छादि) है।


मान लीजिए फलन f: R → R, f(x) = cosx, ∀ x ∈ R द्वारा परिभाषित है। सिद्ध कीजिए कि f न तो एकैकी है और न ही आच्छादक (आच्छादि) है।


एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

एकैकी नहीं है किंतु आच्छादक है।


मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलनएकैकी, आच्छादक या एकैकी आच्छादी हैं:

g(x) = |x|


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x + 4y = 10, x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


परिभाषा का प्रयोग करते हुए, सिद्ध कीजिए कि फलन f: A→ B व्युत्क्रमणीय है यदि और केवल यदि f एकैकी तथा आच्छादक दोनो है।


फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o f ज्ञात कीजिए:


मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?

a * b = (a – b)2 ∀ a, b ∈ Q


मान लीजिए कि T, यूक्लिडिय समतल में, सभी त्रिभुजों का समुच्चय है तथा मान लीजिए कि T में एक संबंध R इस प्रकार परिभाषित है कि aRb, यदि a सर्वांगसम है b के, ∀ a, b ∈ T, तो R ______


मान लीजिए कि A = {1, 2, 3} संबंध R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}, पर विचार कीजिए, तो R _________ है।


Q ~ {0} में  a * b = ` (ab)/2` ∀ a, b ∈ Q ~ {0} प्रकार से परिभाषित द्वि-आधारी संक्रिया * का (के लिए) तत्सम अवयव ______ है।


मान लीजिए f: R → R, f(x) = `1/x` x ∈ R द्वारा परिभाषित है, तो f ______ है।


मान लीजिए f: A → B तथा g: B → C एकैकी आच्छादी फलन हैं, तो (g o f)-1 ______ है।


मान लीजिए कि f: R - `{3/5}` → R, f(x) = `(3x + 2)/(5x - 3)` द्वारा परिभाषित है, तो ______


मान लीजिए कि f = {(1, 2), (3, 5), (4, 1) तथा g = {(2, 3), (5, 1), (1, 3)}। तो g o f = ______ तथा f o g = ______।


मान लीजिए कि f: R → R, f(x) = `x/sqrt(1 + x^2)` द्वारा परिभाषित है, तो ( f o f o f ) (x) = ______।


किसी समुच्चय में किसी द्वी-आधारी संक्रिया का तत्समक अवयव सदैव होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×