Advertisements
Advertisements
Question
मान लीजिए कि f, g: R → R क्रमशः f(x) = x + 1, g(x) = 2x – 3 द्वारा परिभाषित है। f + g, f – g और `"f"/"g"` ज्ञात कीजिए।
Solution
f, g: r → r क्रमशः f (x) = x+ 1 और g (x) = 2x - 3 द्वारा परिभाषित किया गया है।
(f + g) (x) = f(x) + g(x)
= (x + 1) + (2x – 3)
= 3x - 2
∴ (f + g) (x) = 3x – 2
(f -g)(x) = f(x) - g(x)
= (x + 1) - (2x – 3)
= x + 1 – 2x + 3
= -x + 4
∴ (f - g) (x) = - x + 4
\[\left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)}, g\left( x \right) \neq 0, x \in R\]
\[\Rightarrow \left( \frac{f}{g} \right)\left( x \right) = \frac{x + 1}{2x - 3}, 2x - 3 \neq 0 \text{ or } 2x \neq 3\]
\[\Rightarrow \left( \frac{f}{g} \right)\left( x \right) = \frac{x + 1}{2x - 3}, x \neq \frac{3}{2}\]
APPEARS IN
RELATED QUESTIONS
f(x) = |x – 1| द्वारा परिभाषित वास्तविक फलन f का प्रांत तथा परिसर ज्ञात कीजिए।
मान लीजिए कि f = `{(x, x^2/(1+x^2)):x ∈ R}` R से R में एक फलन है। f का परिसर निर्धारित कीजिए।
मान लीजिए कि f = {(1, 1), (2, 3), (0, -1), (-1, -3)} Z से Z में, f(x) = ax + b, द्वारा परिभाषित एक फलन है, जहाँ a, b कोई पूर्णांक हैं। a, b को निर्धारित कीजिए।
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
f = {(x, x) ∣ x एक वास्तविक संख्या है}
यदि f तथा g, नियम f(x) = x2 + 7 तथा g(x) = 3x + 5 द्वारा परिभाषित वास्तविक फलन हैं, तो निम्नलिखित में से प्रत्येक को ज्ञात कीजिए: f(3) + g(-5)
यदि f तथा g, नियम f(x) = x2 + 7 तथा g(x) = 3x + 5 द्वारा परिभाषित वास्तविक फलन हैं, तो निम्नलिखित में से प्रत्येक को ज्ञात कीजिए:
f(–2) + g (–1)
यदि f तथा g, नियम f(x) = x2 + 7 तथा g(x) = 3x + 5 द्वारा परिभाषित वास्तविक फलन हैं, तो निम्नलिखित में से प्रत्येक को ज्ञात कीजिए:
f(t) – f(–2)
यदि f तथा g, नियम f(x) = x2 + 7 तथा g(x) = 3x + 5 द्वारा परिभाषित वास्तविक फलन हैं, तो निम्नलिखित में से प्रत्येक को ज्ञात कीजिए:
`(f(t) – f(5))/(t - 5)`, यदि t ≠ 5
मान लीजिए कि f(x) = 2x + 1 तथा g(x) = 4x − 7 द्वारा परिभाषित f तथा g वास्तविक फलन हैं, तो किन वास्तविक संख्याओं x के लिए, f(x) = g(x)?
यदि f(x) = 2x + 1 तथा g(x) = x2 + 1 द्वारा परिभाषित f तथा g दो वास्तविक फलन हैं, तो निम्नलिखित ज्ञात कीजिए:
f + g
यदि f(x) = 2x + 1 तथा g(x) = x2 + 1 द्वारा परिभाषित f तथा g दो वास्तविक फलन हैं, तो निम्नलिखित ज्ञात कीजिए:
f – g
यदि f(x) = 2x + 1 तथा g(x) = x2 + 1 द्वारा परिभाषित f तथा g दो वास्तविक फलन हैं, तो निम्नलिखित ज्ञात कीजिए:
fg
यदि [x]2 − 5[x] + 6 = 0, जहाँ प्रतीक [ ] महत्तम पूर्णांक फलन को निरूपित करता है, तो ______
f(x) = `(4 - x)/(x - 4)` द्वारा परिभाषित फलन f का प्रांत और परिसर निम्नलिखित प्रकार है,
f(x) = `sqrt(x - 1)` द्वारा परिभाषित वास्तविक फलन f के प्रांत तथा परिसर निम्नलिखित प्रकार है,
मान लीजिए कि
f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)}
g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}
दो प्रदत्त वास्तविक फलन हैं, तो f. g का प्रांत ______ है।
मान लीजिए कि f = {(2, 4), (5, 6), (8, –1), (10, –3)}
g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, 5)}
दो प्रदत्त वास्तविक फलन हैं, तो निम्नलिखित का सही मिलान (Match) कीजिए:
(a) f – g | (i) `{(2, 4/5), (8, (-1)/4), (10, (-3)/13)}` |
(b) f + g | (ii) {(2, 20), (8, –4) , (10, –39)} |
(c) f . g | (iii) {(2, –1), (8, –5), (10, –16) |
(d) `f/g` | (iv) {(2, 9), (8, 3), (10, 10)} |
R = {(a, b) : a, b ∈ N तथा a = b2} द्वारा परिभाषित N से N में, एक संबंध R है। क्या निम्नलिखित कथन सत्य है।
(a, b) ∈ R, का तात्पर्य है कि (b, a) ∈ R
दशा में अपने उत्तर का औचित्य भी बताइए।