Advertisements
Advertisements
Question
n (≥ 3) persons are sitting in a row. Two of them are selected. Write the probability that they are together.
Solution
It is given that n (≥ 3) persons are seated in a row and two persons are selected.
∴ Total number of elementary event = n(S) = nC2
Let E be the event associated with the experiment that two persons are together.
∴ n(E) = n -1C1
Thus, required probability = P(E) = \[\frac{n(E)}{n(S)}\]
= \[\frac{^{n - 1}{}{C}_1}{^{n}{}{C}_2}\]
= \[\frac{\left( n - 1 \right)}{\frac{n\left( n - 1 \right)}{2}} = \frac{2\left( n - 1 \right)}{n\left( n - 1 \right)} = \frac{2}{n}\]
APPEARS IN
RELATED QUESTIONS
Describe the sample space for the indicated experiment: A coin is tossed four times.
One die of red colour, one of white colour and one of blue colour are placed in a bag. One die is selected at random and rolled, its colour and the number on its uppermost face is noted. Describe the sample space.
A coin is tossed. If the out come is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for the experiment?
A coin is tossed. If it shows a tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows head, we throw a die. Find the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment?
Write the sample space for the experiment of tossing a coin four times.
An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.
An experiment consists of boy-girl composition of families with 2 children.
What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?
There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
A card is picked up from a deck of 52 playing cards.
What is the sample space of the experiment?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is either a black card or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither a heart nor a king
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are white
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are of the same colour.
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
Find the probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two I's do not come together.
A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?
A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that on one there is a prime number and on the other there is a multiple of 4.as
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by addting the probabilities of elementary events.
Three dice are thrown simultaneously. What is the probability of getting 15 as the sum?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
Two dice are thrown together. The probability that at least one will show its digit greater than 3 is
Two dice are thrown simultaneously. The probability of obtaining total score of seven is
6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is
Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?
A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.
An urn contains nine balls of which three are red, four are blue and two are green. Three balls are drawn at random without replacement from the urn. The probability that the three balls have different colours is ______.