Advertisements
Advertisements
Question
n के किस मान के लिए, दोनों समांतर श्रेढियों 63, 65, 67,… और 3, 10, 17,… के nवें पद बराबर होंगे?
Solution
A.P. 63, 65, 67, … पर विचार करें
a = 63
d = a2 − a1 = 65 − 63 = 2
इस A.P. का nवाँ पद = an = a + (n − 1)d
an = 63 + (n − 1)2
an = 63 + 2n − 2
an = 61 + 2n ...(1)
3, 10, 17, …
a = 3
d = a2 − a1
= 10 − 3
= 7
इस A.P. का nवाँ पद = 3 + (n − 1) 7
an = 3 + 7n − 7
an = 7n − 4 ...(2)
यह दिया गया है कि, इन समांतर श्रेढ़ियों का nवाँ पद एक दूसरे के बराबर है।
इन दोनों समीकरणों को समान करने पर, हम प्राप्त करते हैं
61 + 2n = 7n − 4
61 + 4 = 5n
5n = 65
n = 13
इसलिए, इन दोनों समांतर श्रेढ़ियों का 13वाँ पद एक दूसरे के बराबर है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित समांतर श्रेढि में रिक्त खान (boxes) के पदों को ज्ञात कीजिए।
`square, 38, square, square, square, -22`
10 और 250 के बीच में 4 के कितने गुणज हैं?
वह A.P. ज्ञात कीजिए जिसका तीसरा पद 16 है और 7वाँ पद 5वें पद से 12 अधिक है।
उस A.P. के प्रथम 51 पदों का योग ज्ञात कीजिए, जिसके दूसरे और तीसरे पद क्रमशः 14 और 18 हैं।
दर्शाइए कि a1, a2,…,an,.... से एक A.P. बनाती है, यदि an नीचे दिए अनुसार परिभाषित हैं:
an = 3 + 4n
साथ ही, ऊपर दिए गए स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
A.P.: 121, 117, 113,...., का कौन-सा पद सबसे पहला ऋणात्मक पद होगा?
[संकेत: an < 0 के लिए n ज्ञात कीजिए।]
AP: −3, –7, −11, ... के लिए क्या हम a30 और a20 को वास्तव में बिना ज्ञात किए सीधे a30 – a20 ज्ञात कर सकते हैं? अपने उत्तर के लिए कारण दीजिए।
औचित्य देते हुए बताइए कि क्या यह कहना सत्य है कि निम्नलिखित किसी AP के n वें पद हैं:
2n – 3
प्रत्येक AP के प्रथम तीन पद लिखिए, जिनके a और d नीचे दिए हैं :
a = `sqrt(2)`, d = `1/sqrt(2)`
यदि किसी AP के तीसरे और 8 वें पदों का योग 7 है तथा 7 वें और 14 वें पदों का योग –3 है, तो उसका 10 वाँ पद ज्ञात कीजिए।