Advertisements
Advertisements
Question
वह A.P. ज्ञात कीजिए जिसका तीसरा पद 16 है और 7वाँ पद 5वें पद से 12 अधिक है।
Solution
हमने दिया है a3 = 16
a + (3 − 1)d = 16
a + 2d = 16(1)
a7 − a5 = 12
[a + (7 − 1)d] − [a + (5 − 1)d] = 12
(a + 6d) − (a + 4d) = 12
2d = 12
d = 6
समीकरण (1) से, हम प्राप्त करते हैं
a + 2(6) = 16
a + 12 = 16
a = 4
इसलिए, A.P. 4, 10, 16, 22, ... होगी।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित में सही उत्तर चुनिए और उसका औचित्य दीजिए:
A.P.: 10, 7, 4, ..., का 30 वाँ पद है:
निम्नलिखित समांतर श्रेढि में रिक्त खान (box) के पद को ज्ञात कीजिए।
`5, square, square, 9 1/2`
n के किस मान के लिए, दोनों समांतर श्रेढियों 63, 65, 67,… और 3, 10, 17,… के nवें पद बराबर होंगे?
A.P.: 3, 8, 13,……, 253 में अंतिम पद से 20वाँ पद ज्ञात कीजिए।
किसी A.P. के चौथे और 8वें पदों का योग 24 है तथा छठे और 10वें पदों का योग 44 है। इस A.P. के प्रथम तीन पद ज्ञात कीजिए।
क्या AP: 31, 28, 25, ... का 0 कोई पद है? अपने उत्तर का औचित्य दीजिए।
प्रत्येक AP के प्रथम तीन पद लिखिए, जिनके a और d नीचे दिए हैं :
a = `sqrt(2)`, d = `1/sqrt(2)`
किसी AP के 26 वें, 11 वें और अंतिम पद क्रमश : 0, 3 और `-1/5` हैं। इसका सार्व अंतर और पदों की संख्या ज्ञात कीजिए।
AP: –2, –4, –6,..., –100 का अंत से 12 वाँ पद ज्ञात कीजिए।
AP: 53, 48, 43,... में प्रथम ऋणात्मक पद कौन-सा होगा?