Advertisements
Advertisements
प्रश्न
वह A.P. ज्ञात कीजिए जिसका तीसरा पद 16 है और 7वाँ पद 5वें पद से 12 अधिक है।
उत्तर
हमने दिया है a3 = 16
a + (3 − 1)d = 16
a + 2d = 16(1)
a7 − a5 = 12
[a + (7 − 1)d] − [a + (5 − 1)d] = 12
(a + 6d) − (a + 4d) = 12
2d = 12
d = 6
समीकरण (1) से, हम प्राप्त करते हैं
a + 2(6) = 16
a + 12 = 16
a = 4
इसलिए, A.P. 4, 10, 16, 22, ... होगी।
APPEARS IN
संबंधित प्रश्न
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:
a = -1, d = `1/2`
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:
a = -1.25, d = -0.25
निम्नलिखित A.P. के लिए प्रथम पद तथा सार्व अंतर लिखिए:
-5, -1, 3, 7....
निम्नलिखित A.P. के लिए प्रथम पद तथा सार्व अंतर लिखिए:
0.6, 1.7, 2.8, 3.9,....
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
______ | -3 | 18 | -5 |
निम्नलिखित में सही उत्तर चुनिए और उसका औचित्य दीजिए:
A.P.: -3, `-1/2`, 2, ... का 11वाँ पद है:
दो समांतर श्रेढियों का सार्व अंतर समान है। यदि इनके 100वें पदों का अंतर 100 है, तो इनके 1000वें पदों का अंतर क्या होगा?
उस A.P. के प्रथम 51 पदों का योग ज्ञात कीजिए, जिसके दूसरे और तीसरे पद क्रमशः 14 और 18 हैं।
यदि किसी AP का दूसरा पद 13 और 5 वाँ पद 25 है, तो उसका 7 वाँ पद क्या है?
10 और 300 के बीच में स्थित ऐसी कितनी संख्याएँ हैं, जिनको 4 से भाग देने पर शेषफल 3 रहता है?