Advertisements
Advertisements
Question
AP: –2, –4, –6,..., –100 का अंत से 12 वाँ पद ज्ञात कीजिए।
Solution
दिया गया AP: –2, –4, –6,..., –100
यहाँ, पहला पद (a) = –2,
सामान्य अंतर (d) = –4 – (–2) = –2
और अंतिम पद (l) = –100
हम जानते हैं कि, किसी AP का अंत से n वाँ पद an = l – (n – 1)d है,
जहाँ l अंतिम पद है और d सामान्य अंतर है।
∴ अंत से 12 वाँ पद,
a12 = –100 – (12 – 1)(–2)
= –100 + (11)(2)
= –100 + 22
= –78
अतः, अंत से 12 वाँ पद –78 है।
APPEARS IN
RELATED QUESTIONS
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:
a = -1.25, d = -0.25
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
-18 | ______ | 10 | 0 |
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
-18.9 | 2.5 | ______ | 3.6 |
एक A.P. में 50 पद हैं, जिसका तीसरा पद 12 है और अंतिम पद 106 है। इसका 29वाँ पद ज्ञात कीजिए।
किसी AP में, यदि a = 3.5, d = 0 और n = 101 है, तो an बराबर ______ है।
यदि किसी AP के 7 वें पद का 7 गुना उसके 11 वें पद के 11 गुने के बराबर हो, तो उसका 18 वाँ पद होगा ______ है।
AP: –11, –8, –5, ..., 49 के अंत से चौथा पद ______ है।
क्या AP: 31, 28, 25, ... का 0 कोई पद है? अपने उत्तर का औचित्य दीजिए।
किसी AP के 5 वें और 7 वें पदों का योग 52 है तथा 10 वाँ पद 46 है। वह AP ज्ञात कीजिए।
यदि किसी AP का 9 वाँ पद शून्य है, तो सिद्ध कीजिए कि उसका 29 वाँ पद उसके 19 वें पद का दुगुना होगा।