Advertisements
Advertisements
Question
Name the slowest step that determines the rate in a complex reaction.
Solution
Rate determining step.
APPEARS IN
RELATED QUESTIONS
Distinguish between Order and Molecularity of reaction.
Answer the following in one or two sentences.
What is the relationship between coefficients of reactants in a balanced equation for an overall reaction and exponents in the rate law? In what case the coefficients are the exponents?
Answer the following in one or two sentences.
What is the rate-determining step?
A reaction takes place in two steps:
- \[\ce{NO_{(g)} + Cl2_{(g)} -> NOCl2_{(g)}}\]
- \[\ce{NOCl2_{(g)} + NO_{(g)} -> 2NOCl_{(g)}}\]
- Write the overall reaction.
- Identify the reaction intermediate.
- What is the molecularity of each step?
Which of the following is a unimolecular reaction?
Write an expression for instantaneous rate of reaction:
2N2O(g) → 4NO2(g) + O2(g).
What is the order of reaction?
Why is molecularity applicable for only elementary reactions whereas order of a reaction is applicable for elementary and complex reactions? Explain with suitable examples.
For the elementary reaction
\[\ce{2SO2(g) + O2(g) -> 2SO3(g)}\], identify the correct among the following relations.
For the elementary reaction, \[\ce{3H2_{(g)} + N2_{(g)} -> 2NH3_{(g)}}\] identify the correct relation among the following relations.
For the reaction \[\ce{2NO2 + F2 -> 2NO2F}\], following mechanism has been provided:
\[\ce{NO2 + F2 ->[slow] NO2F + F}\]
\[\ce{NO2 + F ->[fast] NO2F}\]
The rate expression of the above reaction can be written as:
The reaction \[\ce{2NO2Cl_{(g)} -> 2NO2_{(g)} + Cl2_{(g)}}\] takes place in two steps as
(i) \[\ce{NO2Cl_{(g)} -> NO2_{(g)} + Cl_{(g)}}\]
(ii) \[\ce{NO2Cl_{(g)} + Cl_{(g)} -> NO2_{(g)} + Cl2_{(g)}}\]
Identify the reaction intermediate.
A chemical species that is formed in one elementary step in the mechanism of complex reaction and consumed in the subsequent step is called ____________.
Consider the following elementary reaction;
\[\ce{2AB_{(g)} -> A2_{(g)} + B2_{(g)}}\]
The molecularity of the reaction is ____________.
A reaction involving two different reactants can never be a ______
Identify the molecularity of following elementary reaction:
NO(g) + O3(g) → NO3(g) + O(g)
The reaction takes place in two steps as
(i) \[\ce{NO2Cl(g) ->[k1] NO2(g) + Cl(g)}\]
(ii) \[\ce{NO2Cl(g) + Cl(g) ->[k2] NO2(g) + Cl2(g)}\]
Identify the reaction intermediate.
A certain reaction occurs in two steps as
(i) \[\ce{2SO2(g) + 2NO2(g) -> 2SO3(g) + 2NO(g)}\]
(ii) \[\ce{2NO(g) + O2(g) -> 2NO2(g)}\]
In the reaction:
How does a catalyst differ from reaction intermediate?
Find out the reaction intermediate and molecularity of the following reactions.
\[\ce{NO_{(g)} + Cl2_{(g)} -> NOCl_{2(g)}}\]
\[\ce{NOCl_{2(g)} + NO_{(g)} -> 2NOCl_{(g)}}\]
Draw the structure of BrF5 and HOCl.
Define molecularity of reaction.