Advertisements
Advertisements
Question
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
4s2 - 4s + 1
Solution
4s2 - 4s + 1 = 0
⇒ 4s2 - 2s - 2s + 1 = 0
⇒ 2s(2s - 1) - 1(2s - 1) = 0
⇒ (2s - 1) (2s - 1) = 0
⇒ 2s - 1 = 0, 2s - 1 = 0
⇒ 2s = 1, 2s = 1
⇒ s = `1/2`, s = `1/2`
p(s) = 0 के लिए, हमारे पास है, (2s - 1) = 0
`s = 1/2`
∴ `4s^2 - 4s + 1 "के शून्यक" 1/2 "और" 1/2` हैं।
= शून्यों का योग =`"-x का गुणांक" / "x का गुणांक"`
= `1/2 + 1/2 = (-(-4))/4`
1 = 1
शून्यों का गुणनफल = `"अचर पद" / (s^2 "का गुणांक")`
`(1/2)xx(1/2)= 1/4`
= `1/4 = 1/4`
इस प्रकार, बहुपद 4s2 - 4s + 1 में शून्यकों और गुणांकों के बीच संबंध सत्यापित है।
APPEARS IN
RELATED QUESTIONS
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
`1/4, -1`
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
`-1/4, 1/4`
सत्यापित कीजिए कि निम्न त्रिघात बहुपदों के साथ दी गई संख्याएँ उसकी शून्यक हैं। निम्न स्थिति में शून्यकों और गुणांकों के बीच के संबंध को भी सत्यापित कीजिए:
`x^3 - 4x^2 + 5x - 2; 2, 1, 1`
एक त्रिघात बहुपद प्राप्त कीजिए जिसके शून्यकों का योग, दो शून्यकों को एक साथ लेकर उनके गुणनफलों का योग तथा तीनों शून्यकों के गुणनफल क्रमशः 2, -7, -14 हों।
यदि एक द्विघात बहुपद ax2 + bx + c के दोनों शून्यक धनात्मक हैं, तो a, b और c में से सभी का समान चिन्ह होता हैं।
k का केवल वह मान जिसके लिए द्विघात बहुपद kx2 + x + k के शून्यक बराबर है शून्यक `1/2` है।
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
t3 – 2t2 – 15t
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`(-8)/3, 4/3`
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`(-3)/(2sqrt5), -1/2`