Advertisements
Advertisements
Question
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
6x2 - 3 - 7x
Solution
6x2 - 3 - 7x
⇒ 6x2 - 3 - 7x = 0
⇒ 6x2 - 7x - 3 = 0
⇒ 6x2 - 9x + 2x - 3 = 0
⇒ 3x(2x - 3) + 1(2x - 3) = 0
⇒ (2x - 3) (3x + 1) = 0
⇒ 2x - 3 = 0, 3x + 1 = 0
p(x) = 0 के लिए हमारे पास है,
या तो (3x + 1) = 0
`x = -1/3`
या (2x - 3) = 0
`x = 3/2`
इस प्रकार, के शून्य
6x2 - 3 - 7x `-1/3 "और" 3/2` हैं
⇒ शून्यों का योग =`"-x का गुणांक" / "x का गुणांक"`
⇒ `-1/3 + 3/2= (- (-7))/6`
⇒ `7/6 = 7/6`
शून्यों का गुणनफल = `"अचर पद" / (x^2 "का गुणांक")`
⇒ `-1/3 xx 3/2=(-3)/6`
⇒ `-1/2 = -1/2`
इस प्रकार, बहुपद 6x2 - 3 - 7x में शून्यकों और गुणांकों के बीच संबंध सत्यापित है।
APPEARS IN
RELATED QUESTIONS
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
4s2 - 4s + 1
सत्यापित कीजिए कि निम्न त्रिघात बहुपदों के साथ दी गई संख्याएँ उसकी शून्यक हैं। निम्न स्थिति में शून्यकों और गुणांकों के बीच के संबंध को भी सत्यापित कीजिए:
`2x^3 + x^2 - 5x + 2; 1/2, 1, -2`
एक त्रिघात बहुपद प्राप्त कीजिए जिसके शून्यकों का योग, दो शून्यकों को एक साथ लेकर उनके गुणनफलों का योग तथा तीनों शून्यकों के गुणनफल क्रमशः 2, -7, -14 हों।
शून्यक –2 और 5 वाले बहुपदों की संख्या है
यदि एक त्रिघात बहुपद के सभी शून्यक ऋणात्मक हैं, तो इस बहुपद के सभी गुणांक और अचर पद एक ही चिह्न के होते हैं।
यदि एक त्रिघात बहुपद x3 + ax2 − bx + c के तीनों शून्यक धनात्मक हैं, तो a, b और c में से कम से कम एक अवश्य ही ऋणेतर होगा।
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
4x2 – 3x – 1
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`21/8, 5/16 `
त्रिघात बहुपद `6x^3 + sqrt2x^2 - 10x - 4sqrt2` का एक शून्यक `sqrt2` दिया है। इसके अन्य दो शून्यक ज्ञात कीजिए।