Advertisements
Advertisements
Question
निम्नलिखित प्रश्न में दी गई समीकरण निकाय का संगत अथवा असंगत के रूप में वर्गीकरण कीजिए।
3x - y - 2z = 2
2y - z = - 1
3x - 5y = 3
Solution
माना, A `= [(3,-1,-2),(0,2,-1),(3,-5,0)] , X = [(x),(y),(z)], B = [(2),(-1),(3)]`
अत:, `abs A = [(3,-1,-2),(0,2,-1),(3,-5,0)] = 3 [ 2 xx 0 + 5 xx (-1)] + 1 (0 + 3) - 2(0 - 6)`
`= -15 + 3 + 12 = 0`
`abs A` के अवयवों के सहगुणखंड,
`A_11 = abs ((2,-1),(-5,0)) = 0 - 5 = -5`
`A_12 = - abs ((0,-1),(3,0)) = -3`
`A_13 = abs ((0,2),(3,-5)) = - 6`
`A_21 = - abs ((-1,-2),(-5,0)) = 10`
`A_22 = abs ((3,-2),(3,0)) = 6`
`A_23 = - abs ((3,-1),(3,-5)) = -(- 15 + 3) = 12`
`A_31 = abs ((-1,-2),(2,-1)) = 1 + 4 = 5`
`A_32 = - abs ((3,-2),(0,-1)) = 3`
`A_33 = abs ((3,-1),(0,2)) = 6`
`therefore abs A` के सहगुणखंड का आव्यूह C = `[(-5,-3,-6),(10,6,12),(5,3,6)]`
`therefore adj (A) = C' = [(-5,10,5),(-3,6,3),(-6,12,6)]`
अत: (adj A) B = ` [(-5,10,5),(-3,6,3),(-6,12,6)] [(2),(-1),(3)] = [(-10-10 + 15),(-6 - 6 + 9),(-12 - 12 + 18)] = [(-5),(-3),(-6)] ne 0`
`therefore abs A = 0 और (adj A) B ne 0`
अत: समीकरण निकाय असंगत है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में दी गई समीकरण निकाय का संगत अथवा असंगत के रूप में वर्गीकरण कीजिए।
x + 2y = 2
2x + 3y = 3
निम्नलिखित प्रश्न में दी गई समीकरण निकाय का संगत अथवा असंगत के रूप में वर्गीकरण कीजिए।
x + 3y = 5
2x + 6y = 8
निम्नलिखित प्रश्न में दी गई समीकरण निकाय का संगत अथवा असंगत के रूप में वर्गीकरण कीजिए।
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
निम्नलिखित प्रश्न में दी गई समीकरण निकाय का संगत अथवा असंगत के रूप में वर्गीकरण कीजिए।
5x - y + 4z = 5
2x + 3y + 5z = 2
5x - 2y + 6z = - 1
निम्नलिखित समीकरण निकाय को आव्यूह विधि से हल कीजिए।
5x + 2y = 4
7x + 3y = 5
4 किग्रा प्याज, 3 किग्रा गेहूँ और 2 किग्रा चावल मूल्य Rs 60 है 2 किग्रा प्याज, 4 किग्रा गेहूँ और 6 किग्रा चावल का मूल्य Rs 90 है। 6 किग्रा प्याज, 2 किग्रा गेहूँ और 3 किग्रा चावल का मूल्य Rs 70 है। आव्यूह द्वारा प्रत्येक का मूल्य प्रति किग्रा ज्ञात कीजिए।
यदि `A = [(2,-3,5),(3,2,-4),(1,1,-2)]` है तो A-1 ज्ञात कीजिए। A-1 का प्रयोग करके निम्नलिखित समीकरण निकाय को हल कीजिए।
2x - 3y + 5z = 11
3x + 2y - 4z = -5
x + y - 2z = -3
निम्नलिखित समीकरण निकाय को आव्यूह विधि से हल कीजिए।
2x - y = - 2
3x + 4y = 3
निम्नलिखित समीकरण निकाय को आव्यूह विधि से हल कीजिए।
2x + y + z = 1
x - 2y - z = `3/2`
3y - 5z = 9
निम्नलिखित समीकरण निकाय को आव्यूह विधि से हल कीजिए।
4x - 3y = 3
3x - 5y = 7
निम्नलिखित समीकरण निकाय को आव्यूह विधि से हल कीजिए।
5x + 2y = 3
3x + 2y = 5
निम्नलिखित समीकरण निकाय को आव्यूह विधि से हल कीजिए।
x - y + 2 = 4
2x + y - 3z = 0
x + y + z = 2
निम्नलिखित समीकरण निकाय को आव्यूह विधि से हल कीजिए।
2x + 3y + 3z = 5
x - 2y + z = - 4
3x - y - 2z = 3
निम्नलिखित समीकरण निकाय को आव्यूह विधि से हल कीजिए।
x - y + 2z = 7
3x + 4y – 5z = - 5
2x - y + 3z = 12
यदि a, b और c वास्तविक संख्याएँ हो और सारणिक Δ = `[(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)] = 0` हो तो दर्शाइए कि या तो a + b + c = 0 या a = b = c है |
यदि a, b, c समांतर श्रेढ़ी में हों तो सारणिक `[(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)]` का मान होगा:
निम्नलिखित समीकरण निकाय को हल कीजिए:
`2/x + 3/y + 10/z = 4`
`4/x - 6/y + 5/z = 1`
`6/x + 9/y - 20/z = 2`