English

Nuclei with magic no. of proton Z = 2, 8, 20, 28, 50, 52 and magic no. of neutrons N = 2, 8, 20, 28, 50, 82 and 126 are found to be very stable. - Physics

Advertisements
Advertisements

Question

Nuclei with magic no. of proton Z = 2, 8, 20, 28, 50, 52 and magic no. of neutrons N = 2, 8, 20, 28, 50, 82 and 126 are found to be very stable.

(i) Verify this by calculating the proton separation energy Sp for 120Sn (Z = 50) and 121Sb = (Z = 51).

The proton separation energy for a nuclide is the minimum energy required to separate the least tightly bound proton from a nucleus of that nuclide. It is given by `S_P = (M_(z-1^' N) + M_H - M_(ZN))c^2`. 

Given 119In = 118.9058u, 120Sn = 119.902199u, 121Sb = 120.903824u, 1H = 1.0078252u.

(ii) What does the existance of magic number indicate?

Long Answer

Solution

(i) `S_(pSn) = (M_119.70 + M_H - M_120.70)  c^2`

= (118.9058 + 1.0078252 – 119.902199) c2

= 0.0114362 c2

`S_(pSb) = (M_120.70) + M_H - M_121.70)  c^2`

= (119.902199 + 1.0078252 – 120.903822) c2

= 0.0059912 c2

Since `S_(pSn) > S_(pSb)`, Sn nucleus is more stable than Sb nucleus.

(ii) It indicates the shell structure of nucleus similar to the shell structure of an atom. This also explains the peaks in BE/ nucleon curve.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Nuclei - Exercises [Page 86]

APPEARS IN

NCERT Exemplar Physics [English] Class 12
Chapter 13 Nuclei
Exercises | Q 13.26 | Page 86

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Obtain the binding energy of the nuclei `""_26^56"Fe"` and `""_83^209"Bi"` in units of MeV from the following data:

`"m"(""_26^56"Fe")` = 55.934939 u

`"m"(""_83^209"Bi")`= 208.980388 u


The neutron separation energy is defined as the energy required to remove a neutron from the nucleus. Obtain the neutron separation energies of the nuclei `""_20^41"Ca"` and `""_13^27 "Al"` from the following data:

`"m"(""_20^40"Ca")` = 39.962591 u

`"m"(""_20^41"Ca")` = 40.962278 u

`"m"(""_13^26"Al")` = 25.986895 u

`"m"(""_13^27"Al")` = 26.981541 u


Consider the fission of `""_92^238"U"` by fast neutrons. In one fission event, no neutrons are emitted and the final end products, after the beta decay of the primary fragments, are `""_58^140"Ce"` and `""_44^99"Ru"`. Calculate Q for this fission process. The relevant atomic and particle masses are

`"m"(""_92^238"U")` = 238.05079 u

`"m"(""_58^140"Ce")` = 139.90543 u

`"m"(""_44^99"Ru")` = 98.90594 u


What is meant by the terms half-life of a radioactive substance and binding energy of a nucleus?


Find the binding energy per nucleon of `""_79^197"Au"` if its atomic mass is 196.96 u.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)


What is the minimum energy which a gamma-ray photon must possess in order to produce electron-positron pair?


Binding energy per nucleon for helium nucleus (2 He) is 7.0 MeV Find value of mass defect for helium nucleus


Tritium is an isotope of hydrogen whose nucleus Triton contains 2 neutrons and 1 proton. Free neutrons decay into `p + bare + barν`. If one of the neutrons in Triton decays, it would transform into He3 nucleus. This does not happen. This is because ______.


Heavy stable nucle have more neutrons than protons. This is because of the fact that ______.


He23 and He13 nuclei have the same mass number. Do they have the same binding energy?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×