Advertisements
Advertisements
Question
Obtain the equation of the line containing the point: (2, 4) and perpendicular to the Y−axis.
Solution
Equation of a line perpendicular to Y-axis i.e., parallel to X-axis, is of the form y = k.
Since, the line passes through (2, 4).
∴ k = 4
∴ the equation of the required line is y = 4.
APPEARS IN
RELATED QUESTIONS
Find the slope of the following lines which pass through the point: (2, – 1), (4, 3)
Find the slope of the following lines which pass through the point: (– 2, 3), (5, 7)
Find the slope of the following lines which pass through the point: (2, 3), (2, – 1)
Find the slope of the following lines which pass through the point: (7, 1), (– 3, 1)
Find the slope of the line whose inclination is 30°.
Find the slope of the line whose inclination is 45°.
A line makes intercepts 3 and 3 on coordinate axes. Find the inclination of the line.
Without using Pythagoras theorem, show that points A (4, 4), B (3, 5) and C (– 1, – 1) are the vertices of a right-angled triangle.
Find the slope of the line which makes angle of 45° with the positive direction of the Y-axis measured clockwise.
Find the slope of the line passing through the following point: (1, 2), (3, – 5)
Find the slope of the line passing through the following point: (1, 3), (5, 2)
Find the value of k: the points (1, 3), (4, 1), (3, k) are collinear.
Find the value of k: the point P(1, k) lies on the line passing through the points A(2, 2) and B(3, 3).
Find the slope of the line y – x + 3 = 0.
Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.
Find the equation of the line: containing the point T(7, 3) and having inclination 90°.
Find the equation of the line: containing the origin and having inclination 90°.