English

प्राचीन भारत में, आयतों, त्रिभुजों और समलंबों से संयोजित आकारों की वेदियाँ निम्नलिखित में प्रयोग होती थीं : - Mathematics (गणित)

Advertisements
Advertisements

Question

प्राचीन भारत में, आयतों, त्रिभुजों और समलंबों से संयोजित आकारों की वेदियाँ निम्नलिखित में प्रयोग होती थीं :

Options

  • सार्वजनिक पूजा स्थल

  • घरेलू पूजा कार्य

  • A और B दोनों

  • A, B और C में से कोई नहीं

MCQ

Solution

सार्वजनिक पूजा स्थल 

स्पष्टीकरण -

प्राचीन भारत में सार्वजनिक पूजा के लिए वेदियों का उपयोग किया जाता था, जिनकी आकृतियाँ आयतों, त्रिभुजों और समलंबों का संयोजन होती थीं।

shaalaa.com
यूक्लिड की परिभाषाएँ, अभिगृहीत और अभिधारणाएँ
  Is there an error in this question or solution?
Chapter 5: यूक्लिड की ज्यामिति का परिचय - प्रश्नावली 5.1 [Page 47]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 5 यूक्लिड की ज्यामिति का परिचय
प्रश्नावली 5.1 | Q 16. | Page 47

RELATED QUESTIONS

निम्नलिखित कथन सत्य हैं या असत्य हैं? अपने उत्तर के लिए कारण दीजिए।

एक सांत रेखा दोनों ओर अनिश्चित रूप से बढ़ाई जा सकती है।


निम्नलिखित कथन सत्य हैं या असत्य हैं? अपने उत्तर के लिए कारण दीजिए।

आकृति में, यदि AB = PQ और PQ = XY, तो AB = XY होगा।


निम्नलिखित पद की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?

लम्ब रेखाएँ


यदि एक राशि B एक अन्य राशि A का एक भाग है, तो A को B और एक अन्य राशि C के योग के रूप में लिखा जा सकता है। 


दो भिन्न प्रतिच्छेदी रेखाएँ एक ही रेखा के समांतर नहीं हो सकतीं।


यूक्लिड की पाँचवीं अभिधारणा को अन्य अभिधारणाओं और अभिगृहीतों का प्रयोग करते हुए, सिद्ध करने के प्रयासों के फलस्वरूप अन्य अनेक ज्यामितियों की खोज हुई।


निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :

यह ज्ञात है कि x + y = 10 और x = z है। दर्शाइए कि z + y = 10 है।


निम्नलिखित आकृति में BM = BN हैं, M रेखाखंड AB का मध्य-बिंदु है तथा N रेखाखंड BC का मध्य-बिंदु है। दर्शाइए कि AB = BC है।


निम्नलिखित कथन का अध्ययन कीजिए :

“दो प्रतिच्छेदी रेखाएँ एक ही रेखा पर लंब नहीं हो सकती हैं।”

जाँच कीजिए कि क्या यह कथन यूक्लिड पाँचवीं अभिधारणा का समतुल्य रूपांतरण है।

[संकेत : उपरोक्त कथन में, दो प्रतिच्छेदी रेखा l और m तथा एक अन्य रेखा n की पहचान कीजिए।]


निम्नलिखित कथनों को अभिगृहीत माना गया है :

  1. यदि एक तिर्यक रेखा दो समांतर रेखाओं को प्रतिच्छेद करती है तो संगत कोण आवश्यक रूप से बराबर नहीं होते हैं। 
  2. यदि एक तिर्यक रेखा दो समांतर रेखाओं को प्रतिच्छेद करती है तो एकांतर अंतःकोण बराबर होते हैं।

क्या अभिगृहीतों का यह निकाय संगत (अविरोधी) है? अपने उत्तर का औचित्य दीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×