English

Prove that a Triangle Abc is Isosceles, If: Altitude Ad Bisects Angles Bac, - Mathematics

Advertisements
Advertisements

Question

Prove that a triangle ABC is isosceles, if: altitude AD bisects angles BAC.

Sum

Solution

In ΔABC, let the altitude AD bisects ∠BAC.
Then we have to prove that the ΔABC is isosceles.

In triangles ADB and ADC,
∠BAD = ∠CAD    ...(AD is bisector of ∠BAC)
AD = AD             ...(common)
∠ADB = ∠ADC    ....(Each equal to 90°)
⇒ ΔADB ≅ ΔADC ...(by ASA congruence criterion)
⇒ AB = AC           ...(cpct)
Hence, ΔABC is an isosceles.

shaalaa.com
Converse of Isosceles Triangle Theorem
  Is there an error in this question or solution?
Chapter 10: Isosceles Triangles - Exercise 10 (A) [Page 132]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 10 Isosceles Triangles
Exercise 10 (A) | Q 19.1 | Page 132
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×