English

Prove by Vector Method that the Internal Bisectors of the Angles of a Triangle Are Concurrent. - Mathematics

Advertisements
Advertisements

Question

Prove by vector method that the internal bisectors of the angles of a triangle are concurrent.

Solution


Let ABC be a triangle and \[\vec{\alpha} , \vec{\beta} ,\vec{\gamma}\] be the position vectors of the vertices  A, B and C respectively.
Let AD, BEand CF be the internal bisectors of \[\angle A, \angle B\] and \[\angle C\] respectively.
We know that D divides BC in the ratio of AB : AC that is c : b.
Then,
P.V. of D is \[\frac{c \vec{\gamma} + b \vec{\beta}}{c + b}\].
P.V. of E is\[\frac{c \vec{\gamma} + a \vec{\alpha}}{c + a}\] and 
P.V. of F is \[\frac{a \vec{\alpha} + b \vec{\beta}}{a + b}\]
The point dividing AD in the ratio \[b + c : a\] is \[\frac{a \vec{\alpha} + b \vec{\beta} + c \vec{\gamma}}{a + b + c}\]
The point dividing BE in the ratio of \[a + c : b\] is\[\frac{a \vec{\alpha} + b \vec{\beta} + c \vec{\gamma}}{a + b + c}\]
The point dividing CF in the ratio of a + b : c is \[\frac{a \vec{\alpha} + b \vec{\beta} + c \vec{\gamma}}{a + b + c}\]
Since the point \[\frac{a \vec{\alpha} + b \vec{\beta} + c \vec{\gamma}}{a + b + c}\]  lies on all the three internal bisectors AD, BE and CF.
Hence the internal bisectors are concurrent .

shaalaa.com
Position Vector of a Point Dividing a Line Segment in a Given Ratio
  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - Exercise 23.4 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
Exercise 23.4 | Q 6 | Page 37

RELATED QUESTIONS

The two vectors `hatj+hatk " and " 3hati-hatj+4hatk` represent the two sides AB and AC, respectively of a ∆ABC. Find the length of the median through A


If \[\vec{a,} \vec{b}\] are the position vectors of A, B respectively, find the position vector of a point C in AB produced such that AC = 3 AB and that a point D in BA produced such that BD = 2BA.


Show that the four points A, B, C, D with position vectors \[\vec{a,} \vec{b,} \vec{c,} \vec{d}\] respectively such that \[3 \vec{a} - 2 \vec{b} + 5 \vec{c} - 6 \vec{d} = 0,\] are coplanar. Also, find the position vector of the point of intersection of the line segments AC and BD.


The vertices A, B, C of triangle ABC have respectively position vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\]  with respect to a given origin O. Show that the point D where the bisector of ∠ A meets BC has position vector \[\vec{d} = \frac{\beta \vec{b} + \gamma \vec{c}}{\beta + \gamma},\text{ where }\beta = \left| \vec{c} - \vec{a} \right| \text{ and, }\gamma = \left| \vec{a} - \vec{b} \right|\]
Hence, deduce that the incentre I has position vector
\[\frac{\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}}{\alpha + \beta + \gamma},\text{ where }\alpha = \left| \vec{b} - \vec{c} \right|\]


Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisects each other.


If the position vector \[\vec{a}\] of a point (12, n) is such that \[\left| \vec{a} \right|\] = 13, find the value (s) of n.


If the position vectors of the points A (3, 4), B (5, −6) and C (4, −1) are \[\vec{a,}\] \[\vec{b,}\] \[\vec{c}\] respectively, compute \[\vec{a} + 2 \vec{b} - 3 \vec{c}\].


If \[\vec{a}\] be the position vector whose tip is (5, −3), find the coordinates of a point B such that \[\overrightarrow{AB} =\] \[\vec{a}\], the coordinates of A being (4, −1).


Show that the points 2 \[\hat{i}, -    \hat{i}-4 \] \[\hat{j}\] and \[-\hat{i}+4\hat{j}\]  form an isosceles triangle.


The position vectors of points A, B and C  are \[\lambda \hat{i} +\] 3 \[\hat{j}\],12\[\hat{i} + \mu\] \[\hat{j}\] and 11\[\hat{i} -\] 3 \[\hat{j}\] respectively. If C divides the line segment joining and B in the ratio 3:1, find the values of \[\lambda\] and \[\mu\]


Find a unit vector in the direction of the resultant of the vectors
\[\hat{i} - \hat{j} + 3 \hat{k} , 2 \hat{i} + \hat{j} - 2 \hat{k} \text{ and }\hat{i} + 2 \hat{j} - 2 \hat{k} .\]


Find the position vector of a point R which divides the line segment joining points \[P \left( \hat{i} + 2 \hat{j} + \hat{k} \right) \text{ and Q }\left( - \hat{i} + \hat{j} + \hat{k} \right)\] internally 2:1.


Find the position vector of a point R which divides the line segment joining points:

\[P \left( \hat{i} + 2 \hat{j} + \hat{k}\right) \text { and } Q \left( - \hat{i} + \hat{j} + \hat{k} \right)\] externally


Find the position vector of the mid-point of the vector joining the points P (2, 3, 4) and Q(4, 1, −2).


If the points with position vectors \[10 \hat{i} + 3 \hat{j} , 12 \hat{i} - 5 \hat{j}\text{ and a }\hat{i} + 11 \hat{j}\] are collinear, find the value of a.


If \[\vec{a,} \vec{b}\] are two non-collinear vectors prove that the points with position vectors \[\vec{a} + \vec{b,} \vec{a} - \vec{b}\text{ and }\vec{a} + \lambda \vec{b}\] are collinear for all real values of λ.


If the points A(m, −1), B(2, 1) and C(4, 5) are collinear, find the value of m.


Show that the points whose position vectors are as given below are collinear:
\[2 \hat{i} + \hat{j} - \hat{k} , 3 \hat{i} - 2 \hat{j} + \hat{k} \text{ and }\hat{i} + 4 \hat{j} - 3 \hat{k}\]


Show that the points whose position vectors are as given below are collinear: \[3 \hat{i} - 2 \hat{j} + 4 \hat{k}, \hat{i} + \hat{j} + \hat{k}\text{ and }- \hat{i} + 4 \hat{j} - 2 \hat{k}\]


Show that the four points having position vectors
\[6 \hat{i} - 7 \hat{j} , 16 \hat{i} - 19 \hat{j} - 4 \hat{k} , 3 \hat{j} - 6 \hat{k} , 2 \hat{i} - 5 \hat{j} + 10 \hat{k}\] are coplanar.


Show that the four points A, B, C and D with position vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\], \[\vec{d}\] respectively are coplanar if and only if \[3 \vec{a} - 2 \vec{b} + \vec{c} - 2 \vec{d} = \vec{0} .\]


Define position vector of a point.


If D is the mid-point of side BC of a triangle ABC such that \[\overrightarrow{AB} + \overrightarrow{AC} = \lambda \overrightarrow{AD} ,\] write the value of λ.


Find the position vector of the point which divides the join of points with position vectors `vec"a" + 3vec"b" and vec"a"- vec"b"` internally in the ratio 1 : 3. 


Find the position vector of a point R which divides the line joining the two points P and Q with position vectors `vec"OP" = 2vec"a" + vec"b"` and `vec"OQ" = vec"a" - 2vec"b"`, respectively, in the ratio 1:2 internally


Find the position vector of a point R which divides the line joining the two points P and Q with position vectors `vec"OP" = 2vec"a" + vec"b"` and `vec"OQ" = vec"a" - 2vec"b"`, respectively, in the ratio 1:2 externally


The position vector of the point which divides the join of points with position vectors `vec"a" + vec"b"` and 2`vec"a" - vec"b"` in the ratio 1:2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×