Advertisements
Advertisements
Question
Select the correct answer from the given alternatives:
f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for" x ≠ pi/2),(= log sqrt(2)",", "for" x = pi/2):}`
Options
f is continuous at x = `pi/2`
f has a jump discontinuity at x = `pi/2`
f has a removable discontinuity
`lim_(x -> pi/2) "f"(x)` = 2 log 3
Solution
f is continuous at x = `pi/2`
Explanation;
`"f"(pi/2) = log sqrt(2)`
`lim_(x -> pi/2) "f"(x) = lim_(x -> pi/2) (2^(cotx) - 1)/(pi - 2x)`
= `lim_(x -> pi/2) (2^(tan(pi/2 - x)) - 1)/(2(pi/2 - x))`
Put `pi/2 - x` = h
As `x -> pi/2, "h" -> 0`
∴ `lim_(x -> pi/2) "f"(x) = lim_("h" -> 0) (2^(tan"h") - 1)/(2"h")`
= `1/2 lim_("h" -> 0) ((2^(tan"h") - 1)/(tan"h") xx tan"h"/"h")` ...[∵ h → 0, ∴ tan h → 0 ∴ tan h ≠ 0)
= `1/2 lim_("h" -> 0) (2^(tan"h") - 1)/tan"h" xx lim_("h" -> 0) tan"h"/"h"`
= `1/2*log 2*(1)`
= `log sqrt(2)`
= `"f"(pi/2)`
∴ f is continuous at x = `pi/2`
APPEARS IN
RELATED QUESTIONS
Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)` for x ≠ 1
= 20 for x = 1, at x = 1
Examine whether the function is continuous at the points indicated against them:
f(x) `{:(= x^3 - 2x + 1",", "if" x ≤ 2),(= 3x - 2",", "if" x > 2):}}` at x = 2
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)",", "for" x ≠ 2),(= 1/5",", "for" x = 2):}}`at x = 2
Identify the discontinuity for the following function as either a jump or a removable discontinuity.
f(x) `{:(= x^2 + 3x - 2",", "for" x ≤ 4),(= 5x + 3",", "for" x > 4):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= 4 + sin x",", "for" x < pi),(= 3 - cos x",", "for" x > pi):}`
Discuss the continuity of the following function at the point indicated against them :
f(x) = `{:(=( sqrt(3) - tanx)/(pi - 3x)",", x ≠ pi/3),(= 3/4",", x = pi/3):}} "at" x = pi/3`
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= 3x + 2",", "for" -4 ≤ x ≤-2),(= 2x - 3";", "for" -2 < x ≤ 6):}`
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= (x^3 - 8)/(x^2 - 4)",", "for" x > 2),(= 3",", "for" x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",", "for" x < 2):}`
If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)
If f(x) `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for" x ≠ 0),(= k",", "for" x = 0):}}` is continuous at x = 0, find k
If f(x) `{:(= (sin2x)/(5x) - "a"",", "for" x > 0),(= 4 ",", "for" x = 0),(= x^2 + "b" - 3",", "for" x < 0):}}` is continuous at x = 0, find a and b
For what values of a and b is the function
f(x) `{:(= (x^2 - 4)/(x - 2)",", "for" x < 2),(= "a"x^2 - "b"x + 3",", "for" 2 ≤ x < 3),(= 2x - "a" + "b"",", "for" x ≥ 3):}}` continuous for every x on R?
Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for" -3 ≤ x ≤ 2),(= |x - 5|",", "for" 2 < x ≤ 7):}`.
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) `{:(= x + 1",", "for" 1 < x < 3),(= x^2 + "p"x + "q"",", "for" |x - 2| ≥ 1):}`
Select the correct answer from the given alternatives:
If f(x) = `((sin2x)tan5x)/("e"^(2x) - 1)^2`, for x ≠ 0 is continuous at x = 0, then f(0) is
Select the correct answer from the given alternatives:
If f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |x −1| ≥ 3), (= 4x + 5",", "for" -2 < x < 4):}` is continuous everywhere then,
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for" x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for" x = 1):}}` at x = 1
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 + x + 1",", "for" |x - 3| ≥ 2),(= x^2 + 3",", "for" 1 < x < 5):}`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + 5x + 1"," , "for" 0 ≤ x ≤ 3),(= x^3 + x + 5"," , "for" 3 < x ≤ 6):}`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for" x ≠ 2),(= "k"",", "for" x = 2):}}` at x = 2
Find f(a), if f is continuous at x = a where,
f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π
Solve using intermediate value theorem:
Show that 5x − 6x = 0 has a root in [1, 2]
Solve using intermediate value theorem:
Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5
If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
If f(x) = `{(8-6x; 0<x≤2), (4x-12; 2<x≤3),(2x+10; 3<x≤6):}` then f(x) is ______
If f(x) = `{{:(tanx/x + secx",", x ≠ 0),(2",", x = 0):}`, then ______.
Let f be the function defined by
f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`
If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for" x ≠ 0),(K",", "for" x = 0):}`
is continuous at x = 0, then K is ______.
If f(x) = `{{:(x, "for" x ≤ 0),(0,
"for" x > 0):}`, then f(x) at x = 0 is ______.
If the function f(x) defined by
f(x) = `{{:(x sin 1/x",", "for" x = 0),(k",", "for" x = 0):}`
is continuous at x = 0, then k is equal to ______.
For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.
If f(x) = `{{:((sin^3(sqrt(3)).log(1 + 3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3)) - 1)x)",", x ≠ 0),( a",", x = 0):}`
is continuous in [0, 1] then a is equal to ______.